
Local Linearity: the Key for No-regret Reinforcement
Learning in Continuous MDPs

Davide Maran
Politecnico di Milano (DEIB)

Piazza Leonardo da Vinci,
32-36 - Città Studi, Milano (MI)
davide.maran@polimi.it

Alberto Maria Metelli
Politecnico di Milano (DEIB)

Piazza Leonardo da Vinci,
32-36 - Città Studi, Milano (MI)

albertomaria.metelli@polimi.it

Matteo Papini
Politecnico di Milano (DEIB)

Piazza Leonardo da Vinci,
32-36 - Città Studi, Milano (MI)
matteo.papini@polimi.it

Marcello Restelli
Politecnico di Milano (DEIB)

Piazza Leonardo da Vinci,
32-36 - Città Studi, Milano (MI)

marcello.restelli@polimi.it

Abstract

Achieving the no-regret property for Reinforcement Learning (RL) problems in
continuous state and action-space environments is one of the major open problems
in the field. Existing solutions either work under very specific assumptions or
achieve bounds that are vacuous in some regimes. Furthermore, many structural
assumptions are known to suffer from a provably unavoidable exponential depen-
dence on the time horizon H in the regret, which makes any possible solution
unfeasible in practice. In this paper, we identify local linearity as the feature that
makes Markov Decision Processes (MDPs) both learnable (sublinear regret) and
feasible (regret that is polynomial in H). We define a novel MDP representa-
tion class, namely Locally Linearizable MDPs, generalizing other representation
classes like Linear MDPs and MDPS with low inherent Belmman error. Then, i)
we introduce CINDERELLA, a no-regret algorithm for this general representation
class, and ii) we show that all known learnable and feasible MDP families are
representable in this class. We first show that all known feasible MDPs belong to a
family that we call Mildly Smooth MDPs. Then, we show how any mildly smooth
MDP can be represented as a Locally Linearizable MDP by an appropriate choice
of representation. This way, CINDERELLA is shown to achieve state-of-the-art
regret bounds for all previously known (and some new) continuous MDPs for
which RL is learnable and feasible.

1 Introduction

Reinforcement learning (RL) [35] is a paradigm of artificial intelligence in which an agent interacts
with an environment, which is typically assumed to be a Markov Decision Process (MDP) [30], to
maximize a reward signal in the long term. By interacting with the environment, an RL algorithm
tries to make the agent play actions leading to the highest possible expected reward; RL theory is
the field that designs algorithms to be provably efficient, i.e., to work with probability close to one.
This idea is formalized in a performance metric called the (cumulative) regret, which measures the
cumulative difference between actions played by the algorithm and the optimal ones in terms of
expected reward.

For the case of episodic tabular MDPs, when both the state and the action space are finite, an optimal
result was first proved by [4], who showed a bound on the regret of order Õ(

√
H|S||A|K), where

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

S is the state space, A is the action space, K is the number of episodes of interaction, and H the
time horizon of every episode. This regret is minimax-optimal in the sense that no algorithm can
achieve smaller regret for every arbitrary tabular MDP. This result is not useful in many real-world
scenarios, where S and A are huge, or even continuous [20, 19, 15]. In fact, all applications of RL
to the physical world, like robotics [20] and autonomous driving [19], have to deal with continuous
state spaces. Furthermore, the most common benchmarks used to evaluate practical RL algorithms
[36, 7] have continuous state spaces.

One of the first studied families of MDPs with continuous spaces is the Linear Quadratic Regulator
(LQR) [5], which goes back to control theory. LQR is a model where the state of the system evolves
according to linear dynamics, and the reward is quadratic. Regret guarantees of order Õ(

√
K)for this

problem were obtained by [2] (with a computationally inefficient algorithm) and, then, by [12, 9]. Still,
this parametric model of the environment is very restrictive and does not capture the vast majority of
continuous MDPs. A much wider and non-parametric family is given by Lipschitz MDPs [31], which
assume that bounded differences in the state-action pair (s, a) correspond to bounded differences
in the reward r(s, a) and in the transition function p(·|s, a) (e.g., in Wasserstein metric). Lipschitz
MDPs have been applied to several scenarios, like policy gradient methods [29, 3, 28], RL with
delayed feedback [22], configurable RL [27], and auxiliary tasks for imitation learning [11, 26].
While this model is very general, its regret guarantees are weak, both in terms of dependence on K
and on H . In fact, very recently, [24] showed a regret lower bound of order Ω(2HK

d+1
d+2), where d is

the dimension of the state-action space, which makes this family of problems statistically unfeasible.

Another part of the literature has focused instead on representation classes of MDPs. In this
paper, we call "representation class" a family of problems that depend both on an MDP and on an
exogenous element, usually a feature map. One example can be found in the popular class of Linear
MDPs [39, 18], which assumes that both the transition and the reward function can be factorized
as a scalar product of a known feature map ϕ of dimension dϕ and some unknown vectors. Regret
bounds of order Õ(H3/2d

3/2
ϕ

√
K) are possible [18], which succeed in moving the complexity of the

problem into the dimension dϕ of the feature map. Unfortunately, this representation class is very
restrictive: i) linearity is assumed on both the ph and rh functions; ii) the same linear factorization
must be constant along the state-action space S ×A, which goes in the opposite direction w.r.t. the
locality principle introduced by Lipschitz MDPs. The first issue is solved by [41], which significantly
extends this class of process by assuming linearity on the Bellman optimality operator, which turns
out to be much weaker. This representation class is known as MDPs with low inherent Bellman error,
a generalization of linear MDPs that further allows for a small approximation error I.

Very recently, different kinds of assumptions for continuous spaces were introduced. In Kernelized
MDPs [40], both the reward function and the transition function belong to a reproducing kernel
Hilbert space (RKHS) induced by a known kernel coming from the Matérn covariance function with
parameter ν > 0. The higher the value of ν, the more stringent the assumption, as the corresponding
RHKS contains fewer functions. This kind of assumption enforces the smoothness of the process,
which is stronger for higher values of ν. A generalization of this family can be found in Strongly
smooth MDPs [24], which require the transition and reward functions to be ν−times continuously
differentiable. Although it is a wide, non-parametric family of processes, enforcing the smoothness
of the transition function is rather demanding as it implies that the state s′ is affected by a smooth
noise. For this reason, [24, 25] also defines the larger family of Weakly smooth MDPs, which only
requires the smoothness of the Bellman optimality operator. This model is extremely general, as it
can also capture Lipschitz MDPs. Still, for the same reason, it is affected by an exponential lower
bound in H . Lastly, note that for the last three kinds of MDPs, Kernelized, Strongly and Weakly
Smooth, the best-known regret bounds are linear in K for some values of d and ν. As the regret is
trivially bounded by K, these bounds are vacuous, not guaranteeing convergence to the performance
of the optimal policy.

Our contributions. In this paper, we argue that the aspect that makes many continuous RL problems
both learnable and feasible is local linearity, i.e., the possibility to locally approximate the MDP as a
process exhibiting some sort of linearity for a well-designed feature map. To support this thesis, in
the first part of the paper, (i) we introduce Locally Linearizable MDPs, a novel representation class
of MDPs depending on both a feature map ϕh and a partition Uh of the state-action space of the MDP.
This class generalizes both LinearMDPs and low inherent Bellman Error while also allowing the
feature map to be local. (ii) We design an algorithm, CINDERELLA, which enjoys satisfactory regret

2

bounds for this representation class. In the second part of the paper, we explore how this approach
can be compared to the state of the art on continuous MDP; (iii) we show that all families for which
learnable and feasible RL is possible are included in a novel family of Mildly Smooth MDPs defined
in this paper; (iv) we show that this family is, in turn, a special instance of our Locally Linearizable
MDPs representation class, for an appropriate choice of the feature map. Therefore, CINDERELLA
can be applied to learning on all these families of continuous MDPs. (v) we finally prove that the
regret bound of CINDERELLA outperforms several state-of-the-art results in this field.

2 Background and set-up

Markov Decision processes. We consider a finite-horizon Markov decision process (MDP) [30]
M = (S,A, p, r,H), where S is the state space, A is the action space,1 p = {ph}H−1

h=1 is the sequence
of transition functions mapping, for each step h ∈ [H − 1] := {1, . . . ,H − 1}, a pair z = (s, a) ∈ Z
to a probability distribution ph(·|z) over S, while the initial state s1 may be arbitrarily chosen by
the environment at each episode; r = {rh}Hh=1 is the sequence of reward functions, mapping, for
each step h ∈ [H], a pair z = (s, a) to a real number rh(z), and H is the horizon. At each episode
k ∈ [K], the agent chooses a policy πk = {πk,h}Hh=1, which is a sequence of step-dependent
mappings from S to probability distributions over A. For each step h ∈ [H], the action is chosen as
ah ∼ πk,h(·|sh) and the agent gains reward of mean rh(zh) and independent on the past, then the
environment transitions to the next state sh+1 ∼ ph(·|zh). For a summary of this notation see A.

Value functions and Bellman operators. The state-action value function (or Q-function) quantifies
the expected sum of the rewards obtained under a policy π, starting from a state-step pair (s, h) ∈
S × [H] and fixing the first action to some a ∈ A:

Qπ
h(s, a) := Eπ

[
H∑

ℓ=h

rℓ(sℓ, aℓ)

∣∣∣∣sh = s, ah = a

]
= Eπ

[
H∑

ℓ=h

rℓ(zℓ)

∣∣∣∣zh = (s, a)

]
, (1)

where Eπ denotes expectation w.r.t. to the stochastic process ah ∼ πh(·|sh) and sh+1 ∼ ph(·|zh) for
all h ∈ [H]. The state value function (or V-function) is defined as V π

h (s) := Ea∼πh(·|s)[Q
π
h(s, a)],

for all s ∈ S. The supremum of the value functions across all the policies is referred to as the
optimal value function: Q⋆

h(z) := supπ Q
π
h(z) for the Q-function and V ⋆

h (s) := supπ V
π
h (s) for the

V-function.

In this work, as often done in the literature [42], we assume that the reward is normalized so
that 0 ≤ Qπ

h(z) ≤ 1 for every z ∈ Z and h ∈ [H]. Passing to the case where the per-step
reward is in [0, 1] requires multiplying all upper bounds by H . An explicit way to find the optimal
value function is given by the Bellman optimality operator, which is defined, for every function
f : Z → R, as Thf(s, a) := rh(s, a) + Es′∼ph(·|s,a) [supa′∈A f(s

′, a′)] . In fact, it is easy to show
that Q⋆

h = ThQ⋆
h+1 at every step, while the optimal state-value function is obtained simply as

V ⋆
h (a) = supa∈AQ

⋆
h(s, a).

2

Agent’s regret. We evaluate the performance of an agent, i.e., of a policy πk played at episode
k ∈ [K], with its expected total reward, i.e., the V-function evaluated in the initial state V πk

1 (sk1).
The goal of the agent is to play a sequence of policies {πk}Kk=1 to minimize the cumulative dif-
ference between the optimal performance V ⋆

1 (s
k
1) and its performance V πk

1 (sk1), given the ini-
tial state sk1 chosen by the environment. This quantity takes the name of (cumulative) regret,
RK :=

∑K
k=1

(
V ⋆
1 (s

k
1)− V πk

1 (sk1)
)
. This quantity is non-negative, and by the normalization con-

dition, we can see that it cannot exceed K as every term in the sum is bounded by 1. Note that
if RK = o(K), then the average performance of the chosen policies will converge to optimal
performance. An algorithm choosing a sequence of policies with this property is called no-regret.

Representation classes of MDPs. As anticipated in the introduction, we call "representation class"
a family of MDPs that is defined through its relation with a feature map or another exogenous element.
While the most popular representation class is the Linear MDP, assuming the exact factorization
of both ph and rh, no-regret learning is possible for a much wider family, only requiring a form of

1For convenience, we will denote Z = S ×A and with z any pair (s, a).
2The existence of optimal policies is more subtle than in the finite-action case [6], but this does not prevent

us from defining a meaningful notion of regret.

3

Z1

Z2

Z4

Z2

Z3

Z1

S

A

(a)

Qh[θ
′]

ThQh+1[θ]

d

(b)

Figure 1: In Locally Linearizable MDPs, we have that, as shown in (a), the space Z is partitioned
into several regions, which do not need to be convex nor connected. On each of these regions, as
shown in (b), the result of the Bellman optimality operator can be well approximated by a Q function
that is linear in the feature map, with a parameter θ that may depend on the region itself.

approximate linearity on the application of Bellman’s optimality operator. This class was introduced
by [41] as MDPs with low inherent Bellman error. Given a sequence of compact sets Bh ⊂ Rdϕ , and
calling Qh[θ](s, a) the linear function ϕh(s, a)⊤θ, the inherent Bellman error w.r.t. {Bh}h is defined
as:

I := max
h∈[H]

sup
θ∈Bh+1

inf
θ′∈Bh

∥ϕh(·)⊤θ′ − ThQh+1[θ](·)∥L∞ , (2)

where the supremum norm ∥ · ∥L∞ indicates the maximum of the function in absolute value over Z .
In the realizable case (i.e., I = 0), these processes are a strict generalization of Linear MDPs [41].
To achieve regret guarantees for continuous state-action MDPs that go beyond this linear case, we
will need to borrow some concepts of smoothness from mathematical analysis, as presented below.

Smooth functions. Let Ω ⊂ [−1, 1]d and f : Ω → R. We define a multi-index α as a tuple of
non-negative integers (α1, . . . αd). We say that f ∈ Cν(Ω), for ν ∈ (0,+∞), if it is ν∗−times
continuously differentiable for ν∗ := ⌈ν − 1⌉, and there exists a constant Lν(f) such that:

∀α : ∥α∥1 = ν∗, ∀x, y ∈ Ω : |Dαf(x)−Dαf(y)| ≤ Lν(f)∥x− y∥ν−ν∗
∞ (3)

the multi-index derivative is defined as Dαf := ∂α1+...+αd

∂x
α1
1 ...∂x

αd
d

. The previous set becomes a normed

space when endowed with a norm ∥f∥Cν defined as max
{
max|α|≤ν∗ ∥Dαf∥L∞ , Lν(f)

}
. Note

that, when ν ∈ N, this norm reduces to ∥f∥Cν = max|α|≤ν ∥Dαf∥L∞ , since the Lipschitz constant
Lν(f) of the derivatives up to order ν∗ = ν − 1 correspond exactly to the upper bound of the
derivatives of order ν (which exists as a Lipschitz function is differentiable almost everywhere). For
these values of ν, the spaces defined here are equivalent to the spaces Cν−1,1(Ω) defined in [24].

3 Locally Linearizable MDPs

As we have stated in the introduction, the main limitation of the low inherent Bellman error assumption
is that it cannot model scenarios where the linear parameter θ changes across the state-action space.
In fact, ϕh(s, a)⊤θ must be an approximation of the Q-function Qh(s, a) uniformly over (s, a) ∈ Z .
To overcome this limitation, we introduce a novel concept of locality to enable the feature map to be
associated with different parameters θ in different regions of the state-action space.

Definition 1. A Locally Linearizable MDP is a triple (M, {ϕh}Hh=1, {Uh}Hh=1) where M is an MDP,
ϕh : Z → Rdh is a feature map and Uh a sequence of partitions of the state-action space Z in Nh

regions, so that Uh := {Zh,n}Nh
n=1. We call ρh : Z → [Nh] the map linking every element z ∈ Z to

the index of its set in the partition Uh.

4

As this definition builds on both the feature map ϕh and the partition Uh, this is a representation class.
Calling θh = {θh,n}Nh

n=1 a list of vectors in Rdh , one for each of the regions Zh,n, we employ, as
function approximator for the state-action value function, the following set

Qh :=
{
Qh[θh](·) = ϕh(·)⊤θh,ρh(·), where θh = {θh,n}Nh

n=1, θh,n ∈ Bh,n

}
. (4)

Coherently, we will call Vh := {V (s) = supa∈AQ(s, a) : Q ∈ Qh, s ∈ S}. For fixed z, we
have Qh[θh](z) = ϕh(z)

⊤θh,ρh(z), so that the feature map is allowed to depend directly on z,
while the linear parameter only depends on ρh(z), the function indicating in which of the Nh

regions we are. Bh,n are arbitrary compact sets which contain the candidate values for the linear
parameters θh,n. Two relevant quantities for this model are the 2−norm of the feature map, i.e.,
Lϕ := suph∈[H],z∈Z ∥ϕh(z)∥2 and the diameter of the sets Bh,n, formally, Rh,n := diam(Bh,n).
Analog normalization constants appear in [18, 41]. The low inherent Bellman error property can be
redefined in this setting as follows.

Definition 2. (Inherent Bellmann Error) Given a family of compact sets Bh,n ⊂ Rdh depending on
h ∈ [H], n ∈ [Nh], and their Cartesian product Bh =×Nh

n=1
Bh,n, we define:

I := max
h∈[H]

sup
θh+1∈Bh+1

inf
θh∈Bh

∥Qh[θh](·)− ThQh+1[θh+1](·)∥L∞ . (5)

Note that, for Nh = 1, our definition exactly reduces to Equation (2), as expected. As in that case,
the term I plays the role of an approximation error. The novel aspect is that linearity is independently
enforced in separate regions of the state-action space. We provide a visualization of this concept
in Figure 1. Note that, in principle, any MDP belongs to the Locally Linearizable representation
class. In fact, if we take Uh = {Z}, the trivial partition containing just the state-action space as
an element, and ϕh(z) = 0 (a feature map mapping everything to 0), Equation (5) is satisfied with
I = 1. Nonetheless, this class is interesting only if I is small, as it is easy to show that the regret of
any algorithm in this class grows at least as IK.

Limitations of known approaches. Formally, no algorithm in theoretical RL literature can achieve
no-regret learning on this class of problems, as it is a superclass of the low inherent Bellman error,
which, to the best of our knowledge, is not included in any other setting that has been tackled. Still,
a clever strategy called feature extension (example 2.1 from [18]) may allow us to solve this class
of MDPs. In fact, consider ELEANOR [41], the only algorithm able to deal with MDPs with low
inherent Bellman error. This trick employs a newly defined feature map:

ϕ̃h(z) := [δh,1(z)ϕh(z), δh,2(z)ϕh(z), . . . , δh,Nh
(z)ϕh(z)︸ ︷︷ ︸

Nh

]⊤, δh,n(z) :=

{
1 if ρh(z) = n

0 otherwise

so that its dimension expands from dh to Nhdh. This way, any function of Qh (as defined in
Equation 4) is linear in ϕ̃h(z), with a single θh independent of the region Zn,h. Indeed, we have for
Qh[θh] ∈ Qh:

Qh[θh](z) = ϕh(z)
⊤θh,ρh(z) = ϕ̃h(z)

⊤[θh,1, θh,2, . . . , θh,Nh
].

This shows every Locally Linearizable MDP with feature map ϕh of dimension dh is also an MDP
with low inherent Bellman error w.r.t. ϕ̃h of dimension Nhdh. If we apply the regret bound for
ELEANOR [41, Theorem 1], we obtain:

RK = Õ
(

H∑
h=1

Nhdh
√
K +

H∑
h=1

√
NhdhIK

)
, (6)

holding with high probability. The issue is that the second term, growing linearly in K, depends on
the number of regions as

√
Nh. As we will see in the second part of this paper, the application of this

model to Smooth MDPs requires Nh to be very large and also dependent on K. For this reason, in
the next section, we introduce an ad hoc algorithm for Locally Linearizable MDPs to improve this
dependence.

5

Algorithm 1 CINDERELLA (Constrained INDEpendent REgressions with Local Linear Approxima-
tions)
Require: Failure probability δ, Regularization λ, Region mapping ρh, Feature mapping ϕh

1: Initialize Λ1
h,n := λI for every h ∈ [H], n ∈ [Nh]

2: for k = 1, 2, . . .K do
3: Receive initial state sk1
4: Solve optimization program in (7) obtaining θ

k
h,n for every h ∈ [H] and n ∈ [Nh]

5: Qh[θ
k
h](z) = ϕh(z)

⊤θ
k
h,ρh(z) ∀h ∈ [H]

6: for h = 1, 2, . . . H − 1 do
7: Choose action ak

h ∈ argmaxa∈A Qh[θ
k
h](s

k
h, a)

8: Receive reward rkh and next state skh+1

9: end for
10: end for

3.1 Algorithm

As we have seen, even a wise application of the ELEANOR algorithm is not enough to solve our setting
of Locally Linearizable MDPs satisfyingly. Thus, we introduce a novel algorithm, CINDERELLA
(Algorithm 1). Before analyzing it, we need to introduce some notation. Let us call skh, a

k
h, r

k
h the

state, action, and reward relative to step h of episode k. Moreover, we denote zkh := (skh, a
k
h) and

ϕkh = ϕh(z
k
h). At every episode k ∈ [K], we compute an optimistic estimation of the Q-function for

every step h ∈ [H]. Then, we choose actions in order to maximize this function while fixing sk1 (line
7). Clearly, what is really important is how this surrogate Q-function is computed (line 4). Here,
CINDERELLA relies on solving an optimization problem (7), which follows an idea similar to the one
of [41]. We want to optimize over three sets of variables: θ̂h,n, ξh,n, θh,n, the first one representing
ridge regression of the linear parameter for region n at step h, the second representing the uncertainty
relative to this estimation, and the third one an "optimistic" estimate. Under this view, the objective is
to maximize the surrogate V -function in the first state, and the constraints are designed so that all
variables match their intuitive interpretation. Formally, the optimization problem is defined as:

max
θ̂h,n,ξh,n,θh,n

max
a∈A

ϕ1(s
k
1 , a)

⊤θ1,ρ1(sk1 ,a)
(7)

s.t. θ̂h,n = Λk
h,n

−1
k−1∑
τ=1

1{ρh(zτh) = n}ϕτh
(
rτh +max

a∈A
ϕh+1(s

τ
h+1, a)

⊤θh+1,ρ(sτh+1,a)

)
θh,n = θ̂h,n + ξh,n

∥ξh,n∥Λk
h,n

≤
√
αk
h,n.

Where Λk
h,n :=

∑k
τ=1 1{ρh(zτh) = n}ϕτhϕτh⊤ + λI, is the design matrix of λ−regularized ridge

regression, and αk
h,n is a constant determining the exploration rate which will be fixed in the analysis

B.6. As it is for ELEANOR, this algorithm turns out to be computationally inefficient, an issue that we
discuss in the Appendix D. The first constraint enforces that θ̂h,n is estimated with ridge regression
having as target the (optimistic) value function estimated for step h+ 1, and the second constrain
θh,n = θ̂h,n + ξh,n ensures that the optimistic estimate in every region is given by its mean estimate
plus the uncertainty, while the third one bounds the magnitude of ξh,n so that this uncertainty shrinks
the more data we collect. Difference with ELEANOR stays in the fact that parameters relative to
different regions are learned separately. Despite introducing another layer of technical difficulty in
proving the regret bound, this procedure is relatively natural given the characteristics of our class of
problems.

CINDERELLA: Regret bound. Having defined the algorithm, we can state a theorem showing a
high probability regret bound in our setting.

6

Kernelized
MDPs

Weakly Smooth
MDPs

Strongly Smooth
MDPs

Mildly
Smooth MDPs
(this paper)

Lipschitz
MDPs

Figure 2: Relation between the setting described in this paper and the other settings proposed for
reinforcement learning in continuous state-action spaces. The dashed line means that inclusion holds,
but passing to the larger family brings a exp(H) lower bound on the regret. As we can see, the Mildly
smooth MDP is the largest known setting for which regret of order poly(H) is possible. Note that
the Strongly Smooth family also contains known families like LQRs and Linear MDPs with smooth
feature map [24].

Theorem 1. Assume that Lϕ = O(1) and supn∈[Nh]
Rh,n = O(

√
dh). Then, with probability at

least 1− δ, CINDERELLA (Algorithm 1), with λ = 1 achieves a regret bound of order

RK = Õ
(

H∑
h=1

Nhdh
√
K +

H∑
h=1

√
dhIK

)
.

The proof of this result is long, and is deferred to sections B and C of the appendix. Note that the
two normalization assumptions Lϕ = O(1) and suph∈[H],n∈[Nh]

Rh,n = O(
√
dh) correspond to

the ones enforced by [41]. While for Nh = 1 the two reported bounds coincide, Theorem 1 proves
superior to the regret bound obtained for ELEANOR in our setting (Equation 6), as it prevents the
second term, which is linear in K, to depend on Nh. This dramatically changes the potential of the
regret bounds and, as we will see in the next sections, represents the key to achieving sub-linear regret
bounds for RL in continuous state-action spaces.

4 From local linearity to Mildly Smooth MDPs

Having proved that our CINDERELLA algorithm enjoys an improved regret bound on Locally Lineariz-
able MDPs, we need to see how powerful this new class is once applied to problems with continuous
state-action spaces for which a representation is not given a priori. To this aim, we are going to define
a family of continuous-space MDPs, and prove that they are included in the Locally Linearizable
class for a particular choice of ϕh,Uh. From now on, we assume, without loss of generality, that
S = [−1, 1]dS and A = [−1, 1]dA , so that Z = [−1, 1]d. We call Mildly Smooth MDP a process
where the Bellman optimality operator outputs functions that are smooth.

Definition 3. (Mildly Smooth MDP). An MDPs is Mildly Smooth of order ν if, for every h ∈ [H],
the Bellman optimality operator Th is bounded on L∞(Z) → Cν(Z).

Boundedness over L∞(Z) → Cν(Z) means that the operator transforms functions that are bounded
(i.e., belong to L∞(Z)) into functions that are ν-times differentiable (i.e., belong to Cν(Z)). More-
over, there exists a constant CT < +∞ such that ∥Thf∥Cν ≤ CT (∥f∥L∞ + 1) for every h ∈ [H]
and every function f ∈ L∞(Z). Intuitively, this condition means that by applying the Bellman
operator to bounded (possibly non-smooth) functions, we always get functions that are smooth.

In order to reduce this family of processes to Locally Linearizable MDPs, we have to design the
partition of the state-action space into sets Zh,n. Since Z ⊂ [−1, 1]d, we can find, for every ε > 0, a
set Zε which is an ε-cover of Z in the infinity norm, such that |Zε| =: N ≤ (2/ε)d. Now, for every
zn ∈ Zε, we define recursively Zn to be the set of points which are near to zn, formally:

Z1 := {z ∈ Z : ∥z − z1∥∞ ≤ ε}, Zn := {z ∈ Z : ∥z − zn∥∞ ≤ ε} \ ∪n−1
ℓ=1 Zℓ. (8)

7

By definition, every point of Z is matched with a point zn of the cover Zε and, importantly, is
assigned to exactly one subset Zn of Z . This way, we have defined a partition {Zn}Nn=1 of Z , one
that does not depend on the step h. Secondly, we have to choose the feature map ϕh(·). To this end,
we define ϕh(z) as the vector of Taylor polynomials of degree ν∗ centered in zn ∈ Zε for n = ρ(z)
(just “Taylor feature map” in the following). This means that, fixed z ∈ Z such that ρ(z) = n, the
map ϕ(z) will contain terms of the form (z − zn)α for every multi-index ∥α∥1 ≤ ν∗. Note that the
feature map does not depend on the time-step h either. The dimension of this feature map, which
we call dν∗ , corresponds to the number of non-negative multi-indexes such that ∥α∥1 ≤ ν∗, which
is well-known to be dν∗ =

(
ν∗+d
ν∗

)
≤ νd∗ . The power of this choice lies in the fact that, as it is well

known from mathematical analysis, any Cν function can be approximated by a Taylor polynomial of
degree ν∗ in a neighborhood of diameter ε with an error of order εν . Seeing the regions Zn we have
defined as neighborhoods of the points zn of the cover, the analogy is complete. This argument is
made formal in the following result.

Theorem 2. Let M be a Mildly Smooth MDP, and ε ≤ 1/(2CTH)1/ν . Then, choosing Zh,n

as in Equation (8) and taking ϕh as the Taylor feature map on the same regions, the tuple
(M, {Zh,n}n,h, {ϕh}h) is a Locally Linearizable MDP with

Lϕ = 1 + 2
√
dν∗ , Rh,n = 2

√
dν∗CT , I ≤ 2CT ε

ν .

This reduction shows how general the class of Locally Linearizable MDPs is and enables us to tackle
Mildly Smooth MDPs with the CINDERELLA algorithm, originally designed for Locally Linearizable
MDPs. By appropriately selecting the parameter ε, we can prove the following theorem, bounding
the regret of a Locally Linearizable MDP with smoothness ν and state-action space of dimension d.

Theorem 3. Let M be a Mildly smooth MDP of parameter ν > 0. With probability at least 1− δ,
CINDERELLA, initialized with λ = 1, Zh,n as in Equation (8) and ϕh given by the Taylor feature
map on the same regions, achieves a regret bound of order:

RK ≤ Õ
(
Hdν∗K

ν+2d
2ν+2d +H

2ν+2d
ν

)
.

Before comparing our result with the state of the art, some comments are due. First note that the
exponent of K is ν+2d

2ν+2d , which is always in (1/2, 1). This means that the no-regret property is
achieved in every regime. Two elements in this regret bound are undesirable: i) the exponential
dependence in d (as dν∗ ≤ νd∗) and ii) the lower-order term H

2ν+2d
ν , which has an exponent that may

be very large, albeit polynomial in H . The first issue is discussed in the appendix (Section E.5). We
show that even for the much simpler continuous bandit problem, lower bounds entail that the problem
is not learnable unless d = o(log(K)). Therefore, terms of order 2d can still be seen as o(Kα) for an
arbitrarily small α > 0. For the second issue, note that the exponent of H in the lower order term
is significantly large only if d≫ ν. This regime is known to be very difficult, and in the literature
before this paper it was not even possible to achieve the no-regret property (even just for d > 2ν).

5 Comparison with related works

Regret bounds for continuous MDPs have been an area of intense research in recent years. While
many parametric families like LQRs have been shown to achieve poly(H)

√
K regret bounds [2],

tackling this problem in more general cases has been proved to be very challenging.

Kernelized MDPs [8, 40, 13] are a representation class of processes assuming that the transition
function ph(·) as well as the reward function rh(·) belong to a Reproducing Kernel Hilbert Space
(RKHS) with given kernel k(·, ·). Most of the literature deals with the case of the Matérn kernel.
The smoothness of this kernel is determined by a parameter ν > 0; by fixing it we can compare
this family with the other families of continuous MDPs. The best-known result [40] in this setting
only achieves regret Õ(K

ν+3d/2
2ν+d), which is vacuous if d > 2ν. Very recently [37] presented a regret

bound of order Õ(K
ν+d
2ν+d), but we were not able to verify the correctness of this result. We discuss

a possible subtle issue of the proof in Appendix F. Another family that is based on assuming that
ph and rh belong to some given functional space is the Strongly Smooth MDP [24]. This family
assumes that ph(s′|·), rh(·) ∈ Cν(Z). A subtle difference is that in [24], the smoothness index ν
was restricted to be an integer, while in our case, it is a generic real ν > 0. Regret bounds for this

8

Algorithm Weakly Lipschitz Mildly Strongly Kernelized

[24] LEGENDRE-ELEANOR K
ν+3d/2
d+2ν K

1+3d/2
2+d K

ν+3d/2
2ν+d K

ν+3d/2
2ν+d K

ν+3d/2
2ν+d

[17] GOLF K
2ν+3d

4ν K
2+3d

4 K
2ν+3d

4ν K
2ν+3d

4ν K
2ν+3d

4ν

[34] NET-Q-LEARNING ✗ K
1+d
2+d ✗ K

1+d
2+d K

1+d
2+d

CINDERELLA (Ours) ✗ ✗ K
ν+2d
2ν+2d K

ν+2d
2ν+2d K

ν+2d
2ν+2d

[24] LEGENDRE-LSVI ✗ ✗ ✗ K
ν+2d
2ν+d K

ν+2d
2ν+d

[40] KOVI ✗ ✗ ✗ ✗ K
ν+3d/2
2ν+d

exp(H) lower bound Yes Yes No No No

Table 1: Table containing the order w.r.t. K of the regret guarantee of each algorithm for each
setting discussed in the paper. Columns correspond to different smoothness assumptions: Weakly
and Strongly Smooth MDPs were defined in [24], Lipschitz MDPs in [31], and Kernelized MDPs in
[40]. Rows correspond to algorithms with no-regret guarantees for some of the settings. [24, 34, 37]
represented the state of the art for Strongly smooth MDPs, Lipschitz MDPs, and Kernelized MDPs,
respectively. The last row indicates whether the corresponding setting is feasible or if there exists an
exp(H) lower bound for the regret.

family were shown of order Õ(K
ν+2d
2ν+d), which is vacuous even for d > ν. Since, for the same ν, the

Matèrn kernel RKHS is a subset of Cν(Z) (see Appendix E.3), Strongly Smooth MDPs are more
general than the former family. Further increasing the generality, we have Lipschitz MDPs [31]. This
is only a superset of the Strongly Smooth MDPs for ν = 1, as Lipschitz MDPs do not admit higher
levels of smoothness. A regret guarantee of order Õ(K

1+d
2+d), which turns out to be optimal for this

setting, was achieved by different algorithms [33, 34, 32, 21] in recent years. Unfortunately, it was
recently shown that an exponential dependence on the horizon H is unavoidable [24]. Therefore, the
Lipschitz MDPs, as any of their generalizations, are intrinsically unfeasible.

Increasing the generality even further, we find the family of Weakly Smooth MDPs [24], which
imposes the Bellman optimality operator Th to be bounded on Cν(Z) → Cν(Z). For fixed ν, this
assumption generalizes Strongly smooth MDPs (with the same ν), and, for ν = 1, the Lipschitz
MDPs. For this reason, also this family is affected by an exp(H) regret lower bound, while in terms

of K its regret has been bounded as Õ(K
ν+3d/2
2ν+d), the same as Kernelized MDPs. Introducing a

different notion of dimension, we can also define the family of MDPs with bounded Bellman-Eluder
dimension [17]. This family is, in a certain sense, even wider, but admits worse regret bounds [24].

Key point: locality. Our approach leverages the concept of locality. We approximate the continuous
problem by constructing a feature map that captures information from local neighborhoods. This is a
novel approach in the context of Reinforcement Learning (RL), with only [37] employing a remotely
similar idea. Nonetheless, the effectiveness of this strategy has been well-established in the field of
Continuous Armed Bandits, as demonstrated by [16, 23].

Comparison with our work. As the name suggests, the family of Mildly Smooth MDPs occupies
an intermediate position between Weakly and Strongly Smooth processes. In Appendix E.2, we
formally prove this relation, showing that both inclusions are strict. A graphical representation of this
relationship is shown in Figure 2. Note that, even if our family is not the largest that has been studied
in the literature, it is indeed the largest known one for which RL is feasible.

We have summarized the comparison between the regret bound of CINDERELLA with state-of-the-art
algorithms for the various MDP families in Table 1, where settings (columns) are listed from the most
general (Weakly Smooth) to the least (Kernelized). All inclusions are intended to hold for a fixed
parameter ν, which is shared by all the MDP families apart from the Lipschitz one, which in some
sense has fixed ν = 1. For every column, the best regret guarantee is colored in green, with ✗meaning
that the algorithm (row) is unsuitable for the setting (column). As we can see, CINDERELLA i) works
in every setting where there is no exp(H) lower bound for the regret, achieving the best guarantees
ii) is the only algorithm to exploit smoothness fully, i.e. achieving regret

√
K in the limit ν → ∞

while being non-vacuous for all finite values of d, ν.

9

6 Conclusion

In this paper, we have significantly enlarged the set of MDPs for which no-regret guarantees are
possible. After defining the representation class of Locally Linearizable MDPs (Section 3), we
have introduced a new algorithm called CINDERELLA (Algorithm 1), which is able to achieve a
strong regret guarantee on this setting, being a "local" generalization of the ELEANOR algorithm.
In the second part of the paper, we have introduced a family called Mildly Smooth MDPs (Section
4), which generalizes all the known continuous MDP families where no-regret learning is feasible.
Through an argument based on local Taylor polynomial approximation, we have proved that this
family is a special instance of the Locally Linearizable MDPs, with a specific partition and feature
map. Therefore, we were able to achieve, in Theorem 3, a regret bound for CINDERELLA in the
family of Mildly Smooth MDPs, which constitutes the main result of this paper. Not only this bound
surpasses the state-of-the-art in terms of generality for feasible settings, but is also able to achieve
improved regret bounds for Strongly Smooth MDPs and Kernelized MDPs. Crucially, our work
proves the first regret bound that is non-vacuous in any regime for these two families.

References
[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear

stochastic bandits. Advances in neural information processing systems, 24, 2011.

[2] Yasin Abbasi-Yadkori and Csaba Szepesvári. Regret bounds for the adaptive control of linear
quadratic systems. In Proceedings of the 24th Annual Conference on Learning Theory, pages
1–26. JMLR Workshop and Conference Proceedings, 2011.

[3] Kavosh Asadi, Dipendra Misra, and Michael Littman. Lipschitz continuity in model-based
reinforcement learning. In International Conference on Machine Learning, pages 264–273.
PMLR, 2018.

[4] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for
reinforcement learning. In International Conference on Machine Learning, pages 263–272.
PMLR, 2017.

[5] Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N Pistikopoulos. The explicit
linear quadratic regulator for constrained systems. Automatica, 38(1):3–20, 2002.

[6] Dimitri Bertsekas and Steven E Shreve. Stochastic optimal control: the discrete-time case,
volume 5. Athena Scientific, 1996.

[7] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[8] Sayak Ray Chowdhury and Aditya Gopalan. Online learning in kernelized markov decision
processes. In The 22nd International Conference on Artificial Intelligence and Statistics, pages
3197–3205. PMLR, 2019.

[9] Alon Cohen, Tomer Koren, and Yishay Mansour. Learning linear-quadratic regulators efficiently
with only

√
t regret. In International Conference on Machine Learning, pages 1300–1309.

PMLR, 2019.

[10] Nathaël Da Costa, Marvin Pförtner, Lancelot Da Costa, and Philipp Hennig. Sample path
regularity of gaussian processes from the covariance kernel. arXiv preprint arXiv:2312.14886,
2023.

[11] Angelo Damiani, Giorgio Manganini, Alberto Maria Metelli, and Marcello Restelli. Balanc-
ing sample efficiency and suboptimality in inverse reinforcement learning. In International
Conference on Machine Learning, pages 4618–4629. PMLR, 2022.

[12] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. Regret bounds
for robust adaptive control of the linear quadratic regulator. Advances in Neural Information
Processing Systems, 31, 2018.

10

[13] Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann, and Michal
Valko. Kernel-based reinforcement learning: A finite-time analysis. In International Conference
on Machine Learning, pages 2783–2792. PMLR, 2021.

[14] Gerald B Folland. Real analysis: modern techniques and their applications, volume 40. John
Wiley & Sons, 1999.

[15] Ben Hambly, Renyuan Xu, and Huining Yang. Recent advances in reinforcement learning in
finance. Mathematical Finance, 33(3):437–503, 2023.

[16] David Janz, David Burt, and Javier González. Bandit optimisation of functions in the matérn
kernel rkhs. In International Conference on Artificial Intelligence and Statistics, pages 2486–
2495. PMLR, 2020.

[17] Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes
of rl problems, and sample-efficient algorithms. Advances in neural information processing
systems, 34:13406–13418, 2021.

[18] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–
2143. PMLR, 2020.

[19] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey.
IEEE Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

[20] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research, 32(11):1238–1274, 2013.

[21] Charline Le Lan, Marc G Bellemare, and Pablo Samuel Castro. Metrics and continuity in
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 8261–8269, 2021.

[22] Pierre Liotet, Davide Maran, Lorenzo Bisi, and Marcello Restelli. Delayed reinforcement
learning by imitation. In International Conference on Machine Learning, pages 13528–13556.
PMLR, 2022.

[23] Yusha Liu, Yining Wang, and Aarti Singh. Smooth bandit optimization: generalization to holder
space. In International Conference on Artificial Intelligence and Statistics, pages 2206–2214.
PMLR, 2021.

[24] Davide Maran, Alberto Maria Metelli, Matteo Papini, and Marcello Restell. No-regret rein-
forcement learning in smooth mdps. arXiv preprint arXiv:2402.03792, 2024.

[25] Davide Maran, Alberto Maria Metelli, Matteo Papini, and Marcello Restell. Projection by
convolution: Optimal sample complexity for reinforcement learning in continuous-space mdps.
arXiv preprint arXiv:2405.06363, 2024.

[26] Davide Maran, Alberto Maria Metelli, and Marcello Restelli. Tight performance guarantees of
imitator policies with continuous actions. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 9073–9080, 2023.

[27] Alberto Maria Metelli. Exploiting environment configurability in reinforcement learning, volume
361. IOS Press, 2022.

[28] Alberto Maria Metelli, Flavio Mazzolini, Lorenzo Bisi, Luca Sabbioni, and Marcello Restelli.
Control frequency adaptation via action persistence in batch reinforcement learning. In Interna-
tional Conference on Machine Learning, pages 6862–6873. PMLR, 2020.

[29] Matteo Pirotta, Marcello Restelli, and Luca Bascetta. Policy gradient in lipschitz markov
decision processes. Machine Learning, 100:255–283, 2015.

[30] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

11

[31] Emmanuel Rachelson and Michail G Lagoudakis. On the locality of action domination in
sequential decision making. International Symposium on Artificial Intelligence and Mathematics,
2010.

[32] Sean Sinclair, Tianyu Wang, Gauri Jain, Siddhartha Banerjee, and Christina Yu. Adaptive dis-
cretization for model-based reinforcement learning. Advances in Neural Information Processing
Systems, 33:3858–3871, 2020.

[33] Sean R Sinclair, Siddhartha Banerjee, and Christina Lee Yu. Adaptive discretization for episodic
reinforcement learning in metric spaces. Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 3(3):1–44, 2019.

[34] Zhao Song and Wen Sun. Efficient model-free reinforcement learning in metric spaces. arXiv
preprint arXiv:1905.00475, 2019.

[35] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[36] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages
5026–5033. IEEE, 2012.

[37] Sattar Vakili and Julia Olkhovskaya. Kernelized reinforcement learning with order optimal
regret bounds. Advances in Neural Information Processing Systems, 36, 2024.

[38] Sattar Vakili and Julia Olkhovskaya. Kernelized reinforcement learning with order optimal
regret bounds. arXiv preprint arXiv:2306.07745, 2024.

[39] Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive
features. In ICML, volume 97 of Proceedings of Machine Learning Research, pages 6995–7004.
PMLR, 2019.

[40] Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and Michael Jordan. Provably efficient
reinforcement learning with kernel and neural function approximations. Advances in Neural
Information Processing Systems, 33:13903–13916, 2020.

[41] Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning
near optimal policies with low inherent bellman error. In International Conference on Machine
Learning, pages 10978–10989. PMLR, 2020.

[42] Zihan Zhang, Xiangyang Ji, and Simon S. Du. Is reinforcement learning more difficult than
bandits? A near-optimal algorithm escaping the curse of horizon. In COLT, volume 134 of
Proceedings of Machine Learning Research, pages 4528–4531. PMLR, 2021.

12

A Table of Notation

S, A State/Action space

ph, rh transition/reward function at step h

H time horizon

Z S ×A
Q⋆

h, V
⋆
h Optimal state-action/state value function at step h

Th Bellman optimality operator at step h

ϕh feature map at step h

dh dimension of ϕh
Nh number of regions at step h

Lϕ bound over the two-norm of ϕh for every h ∈ [H]

Zh,n Element of a partition of Z at step h

ρh Mapping from Z to index in [Nh]

Uh {Zh,n : u = 1, . . . Nh}
Qh[θh] Q-function associated to given θh parameter at step h.

Vh[θh] maxa∈AQh[θh](·, a)
Bh Set of candidate θh at step h

Bh,n Set of candidate θh,n at step h restricted to the region n

Rh,n Norm-2 radius of Bh,n

Rh,max supn∈[Nh]
Rh,n

Qh, Vh Space of candidate state-action/state value functions at step
h

θ⋆
h See equation (10)

skh, a
k
h, r

k
h state/action/reward relative to step h of episode k

zkh (skh, a
k
h)

ϕkh ϕh(z
k
h)

Λk
h,n Ridge regression matrix for space Zh,n up to episode k

ξh,n, θh,n, θ̂h,n Optimization variables of the problem in section B.2

Q
k

h(z) Qh[θ
k

h](z)

V
k

h(s) maxa∈AQ
k

h(s, a)

ηkh(V) Bellman error at step h of episode k w.r.t. V
◦
θh,n(Qh+1) see equation 12

∆h(Qh+1) Error done approximating Qh+1 with
◦
θh(Qh+1)

ρkh,n 1{ρh(zkh) = n}√
βk
h,n Quantity defined by corollary 8

N (·) Covering number in infinity norm

E Good event

13

Ω Generic subset of [−1, 1]d

d dimension of a set (usually Z = [−1, 1]d)

ν Index saying how many times a function is differentiable

ν∗ ⌈ν − 1⌉
Lν(f) Lipschitz constant of f w.r.t. the index ν

α multi-index

Dα multi-index derivative

Cν space of functions that are ν−times differentiable

CT See definition 3

∥ · ∥L∞ supremum norm of a function, ∥f∥L∞ = sup |f |
∥ · ∥Cν norm over Cν

T ν∗
y [f] Taylor polynomial of f of order ν∗ centered in y

dν∗

(
ν∗+d
ν∗

)
B Locally Linearizable MDPs

As stated in the main paper, Locally Linearizable MDPs are a representation class of processes that
can be efficiently approximated with linear function in some predefined regions of Z .

Precisely, the linearity stays in the iterations of the Bellman optimality operator, which we recall here.
For a general MDP, we call S,A the state and action space, respectively, Z = S × A, and Th the
Bellman optimality operator at step h, which is given, for every function f : Z → [0, 1], by

Thf(z) :=
∫
S
ph(s

′|z)max
a′∈A

f(s′, a′) ds′.

Recalling the definition given in the main paper, in a Locally Linearizable MDP the state-action
space Z is partitioned into a step-dependent number Nh of regions Zh,n that we collect into Uh :=
{Zh,n : u = 1, . . . Nh}. To map every element z ∈ Z to its corresponding region we define the
function function ρh : Z → [Nh]. The importance of these regions stays in the fact that there is
a step-dependent feature map ϕh : Z → Rdh such that the optimal state-action value function is
approximately linear in ϕh with a parameter depending on the region. Coherently, we define our
approximator functions Qh to be the set of functions on Z that are linear on the regions, namely

Qh(z) = ϕh(z)
⊤θh,ρh(z) z ∈ Z,

coherently, we define Vh := {V (s) = argmaxaQ(s, a) : Q ∈ Qh}. By convenience, we will
sometimes stack all these parameters in the list θh = {θh,n}Nh

n=1 and call Qh[θh] the corresponding
state-action value function. In order not to allow the function set Qh to contain functions with an
arbitrary large slope, we impose the θh,n parameters to be constrained into bounded sets that we call
Bh,n.

We define the following bounds on the parameters of the process.
Definition 4. We call

• Lϕ := suph∈[H],z∈Z ∥ϕh(z)∥2.

• Rh,n := diam(Bh,n).

Now, calling Bh ⊂ Rdh×Nh the sets given by

Bh =
Nh×
n=1

Bh,n,

14

We call I the maximum approximation error that can be done by projecting the result of the Bellman
operator on our functions Q. In formula,

sup
θh+1∈Bh+1

inf
θh∈Bh

∥Q[θh](·)− ThQ[θh+1](·)∥L∞ ≤ I. (9)

Note that the low inherent Bellman error MDPs are a subclass of this problem: it is sufficient to take
Nh = 1 at every step.

B.1 Definition of the quasi-optimal solution

In this subsection, we create what we will call a quasi-optimal solution for the MDP. Define θ⋆
h in the

following recursive way

θ⋆h,n := argmin
θn∈Bh,n

max
z∈Zh,n

|ϕh(z)⊤θn − ThQh+1[θ
⋆
h+1](z)|, (10)

So that θ⋆
h is constructed by stacking these θ⋆h,n terms. We have the following result.

Theorem 4. The approximately optimal Q−function satisfies

∀h ∥Q[θ⋆
h](·)−Q⋆

h(·)∥L∞ ≤ (H − h)I

Proof. We perform the proof by induction, with the case h = H + 1 being trivial.
∥Q[θ⋆

h](·)−Q⋆
h(·)∥L∞ =

∥∥Q[θ⋆
h](·)− ThQh+1[θ

⋆
h+1](·) + ThQh+1[θ

⋆
h+1](·)−Q⋆

h(·)
∥∥
L∞

=
∥∥Q[θ⋆

h](·)− ThQh+1[θ
⋆
h+1](·) + ThQh+1[θ

⋆
h+1](·)− ThQ⋆

h+1(·)
∥∥
L∞

≤
∥∥Q[θ⋆

h](·)− ThQh+1[θ
⋆
h+1](·)

∥∥
L∞

+
∥∥ThQh+1[θ

⋆
h+1](·)− ThQ⋆

h+1(·)
∥∥
L∞

≤
∥∥Q[θ⋆

h](·)− ThQh+1[θ
⋆
h+1](·)

∥∥
L∞ +

∥∥Qh+1[θ
⋆
h+1](·)−Q⋆

h+1(·)
∥∥
L∞ ,

where in the last passage we have used the non-expansivity of the Bellman operator. At this point, the
second part is bounded as

∥Qh+1[θ
⋆
h+1](·)−Q⋆

h+1(·)∥L∞ ≤ (H − h− 1)I,

by inductive hypothesis, while the first one satisfies, by equations (9) and (10)

∥Q[θ⋆
h](·)− ThQh+1[θ

⋆
h+1](·)∥L∞ ≤ I.

Combining the two results gives the thesis.

B.2 Algorithm

We call skh, a
k
h, r

k
h the state, action, and reward relative to step h of episode k. Moreover, we denote

zkh := (skh, a
k
h) and ϕkh = ϕh(z

k
h). We define, for any region n step h and episode k, the ridge

regression matrix as

Λk
h,n :=

k∑
τ=1

1{ρh(zτh) = n}ϕτhϕτh⊤ + λI.

Our algorithm, CINDERELLA (Algorithm 1), is built on top of an optimization problem (Eq. 7) which,
at the start of each episode k, provides an optimistic version of the state-action value function. We
recall it here:

15

max
ξh,n,θh,n,θ̂h,n

max
a∈A

ϕ1(s
k
1 , a)

⊤θ1,ρ(sk1 ,a) (11)

s.t. θ̂h,n = Λk
h,n

−1
k−1∑
τ=1

1{ρh(zτh) = n}ϕτh(rτh + V h+1(s
τ
h+1))

V h+1(·) := max
a∈A

ϕh+1(·, a)⊤θh+1,ρ(·,a)

θh,n = θ̂h,n + ξh,n

∥ξh,n∥Λk
h,n

≤
√
αk
h,n

Note that, with respect to the main paper, we have given a name to the quantity V h+1(·) :=
maxa∈A ϕh+1(·, a)⊤θh+1,ρ(·,a) to make the variables more interpretable. The constant αk

h,n will be
defined in the next sections of this appendix.

B.3 Algorithm analysis

We will now continue our work by proving that CINDERELLA is able to achieve a regret guarantee
for this setting. First, we set up some additional notation.

Additional notation Collecting the solution of the optimization algorithm in the variables θ
k

h, θ̂
k

h

and ξ
k

h, we define

Q
k

h(z) := Qh[θ
k

h](z), V
k

h(s) := max
a∈A

Q
k

h(s, a).

Moreover, in the rest of the section, once fixed a function V : S → [0, 1], we define the Bellman
error at step h of episode k as

ηkh(V) := rkh − rh(s
k
h, a

k
h) + V (skh+1)− Es′∼ph(·|skh,ak

h)
[V (s′)].

Furthermore, given a function Qh+1 ∈ Qh+1, we define

◦
θh,n(Qh+1) := argmin

θn∈Bh,n

max
z∈Zh,n

|ϕh(z)⊤θn − T [Qh+1](z)|, (12)

and, as before, we collect all these vectors in
◦
θh(Qh+1). Finally, we define

∆h(Qh+1)(z) := ThQh+1(z)−Q[
◦
θh(Qh+1)](z).

B.4 Decomposition of the estimated solution

We start by proving a proposition which establishes a relation between the variables of the optimization
problem (11)

16

Proposition 5. Let {ξkh,n, θ
k

h,n, θ̂
k
h,n}h,n be in the feasible region of Problem (11) at episode k of the

process. We have

θ
k

h,n =ξ
k

h,n +
◦
θh,n(Q

k

h+1) + Λk
h,n

−1
k−1∑
τ=1

1{ρh(zτh) = n}ϕτh∆(Q
k

h+1)(z
τ
h)︸ ︷︷ ︸

T1kh,n

(13)

− Λk
h,n

−1◦
θh,n(Q

k

h+1)︸ ︷︷ ︸
T2kh,n

+Λk
h,n

−1
k−1∑
t=1

1{ρh(zτh) = n}ϕτhητh(V h+1)︸ ︷︷ ︸
T3kh,n

(14)

Proof. For simplicity, let us abbreviate ρkh,n := 1{ρh(zkh) = n}. By construction,

θ̂kh,n = Λk
h,n

−1
k−1∑
t=1

ρτh,nϕ
τ
h(r

τ
h + V

k

h+1(s
τ
h+1))

= Λk
h,n

−1
k−1∑
τ=1

ρτh,nϕ
τ
h

(
rh(z

τ
h) + Es′∼ph(·|zτ

h)
[V

k

h+1(s
′)]
)
+ Λk

h,i

−1
k−1∑
t=1

ρτhϕ
τ
hη

k
h(V

k

h+1(s
τ
h+1))︸ ︷︷ ︸

T3kh,n

= Λk
h,n

−1
k−1∑
τ=1

ρτh,nϕ
τ
hTh[Q

k

h+1](z
τ
h) + T3kh,n,

where we have used the definition of Bellman’s optimality operator. By definition, we have

Th[Q
k

h+1](z
τ
h) = Q[

◦
θh(Q

k

h+1)](z
τ
h) + ∆h(Q

k

h+1)(z
τ
h),

which, when multiplied by ρτh,n lets only the term corresponding to the region n remain. Then, by
Equation (12), we have

ρτh,nTh[Q
k

h+1](z
τ
h) = ρτh,nϕh(z

τ
h)

⊤◦
θh,n(Q

k

h+1) + ρτh,n∆h(Q
k

h+1)(z
τ
h).

Using this fact, we have

Λk
h,n

−1
k−1∑
τ=1

ρτh,nϕ
τ
hTh[Q

k

h+1](z
τ
h) = Λk

h,n

−1
k−1∑
τ=1

ρτh,nϕ
τ
h

(
ϕτh

⊤◦
θh,n(Q

k

h+1) + ∆h(Q
k

h+1)(z
τ
h)

)

= Λk
h,n

−1
k−1∑
τ=1

ρτh,nϕ
τ
hϕ

τ
h
⊤◦
θh,n(Q

k

h+1) + T1kh,n.

For the remaining term, note that

Λk
h,n

−1
k−1∑
τ=1

ρτh,nϕ
τ
hϕ

τ
h
⊤◦
θh,n(Q

k

h+1) = Λk
h,n

−1

(
−λ

◦
θh,n(Q

k

h+1) + λ
◦
θh,n(Q

k

h+1) +

k−1∑
τ=1

ρτh,nϕ
τ
hϕ

τ
h
⊤◦
θh,n(Q

k

h+1)

)

= Λk
h,n

−1
(
−λ

◦
θh,n(Q

k

h+1) + Λk
h,n

◦
θh,n(Q

k

h+1)

)
=

◦
θh,n(Q

k

h+1)− T2kh,n

17

The objective of the next lemmas is to show that the terms arising from the previous proposition are
small with high probability.
Lemma 1. For any z ∈ Z , any time-step h and any n, we have

|ϕh(z)⊤T1kh,n| ≤ ∥ϕh(z)∥Λk
h,n

−1

√
pkh,nI,

where

pkh,n :=

k−1∑
τ=1

1{ρh(zτh) = n},

and in particular

∥T1kh,n∥Λk
h,n

≤
√
pkh,nI.

Proof. By definition,

|ϕh(z)⊤T1kh,n| =
∣∣∣∣∣ϕh(z)⊤Λk

h,n

−1
k−1∑
τ=1

1{ρh(zτh) = n}ϕτh∆(Q
k

h+1)(z
τ
h)

∣∣∣∣∣
≤ ∥Λk

h,n

−1
ϕh(s, a)∥Λk

h,n

∥∥∥∥∥
k−1∑
τ=1

1{ρh(zτh) = n}ϕτh∆(Q
k

h+1)(z
τ
h)

∥∥∥∥∥
Λk

h,n
−1

= ∥ϕh(s, a)∥Λk
h,n

−1

∥∥∥∥∥
k−1∑
τ=1

1{ρh(zτh) = n}ϕτh∆(Q
k

h+1)(z
τ
h)

∥∥∥∥∥
Λk

h,n
−1

.

At this point, leave the first term and, in the second we rewrite the sum for the indices where the
indicator function is not zero, getting∥∥∥∥∥∥

pk
h,n∑

τ ′=1

ϕτ
′

h ∆(Q
k

h+1)(z
τ ′

h)

∥∥∥∥∥∥
Λk

h,n
−1

.

We can then use Lemma 8 from [41], taking ai = ϕτ
′

h and bi = ∆(Q
k

h+1)(z
τ ′

h). As |bi| ≤ I, by the
low inherent Bellman error assumption (Eq. 9), this gives∥∥∥∥∥∥

pk
h,n∑

τ ′=1

ϕτ
′

h ∆(Q
k

h+1)(z
τ ′

h)

∥∥∥∥∥∥
Λk

h,n
−1

≤
√
pkh,nI,

which ends the proof of the first part. The second one comes from

∥T1kh,n∥Λk
h,n

=

∥∥∥∥∥∥Λk
h,n

−1
pk
h,n∑

τ ′=1

ϕτ
′

h ∆(Q
k

h+1)(z
τ ′

h)

∥∥∥∥∥∥
Λk

h,n

=

∥∥∥∥∥∥
pk
h,n∑

τ ′=1

ϕτ
′

h ∆(Q
k

h+1)(z
τ ′

h)

∥∥∥∥∥∥
Λk

h,n
−1

≤
√
pkh,nI.

We proceed bounding the second part of the sum.
Lemma 2. For any z ∈ Z , any time-step h and any n, we have

|ϕh(z)⊤T2kh,n| ≤ ∥ϕh(z)∥Λk
h,n

−1λ−1Rh,n,

and, in particular
∥T2kh,n∥Λk

h,n
≤ λ−1Rh,n.

18

Proof. By definition,

|ϕh(z)⊤T2kh,n| =
∣∣∣∣ϕh(z)⊤Λk

h,n

−1◦
θh,n(Q

k

h+1)

∣∣∣∣
≤ ∥Λk

h,n

−1
ϕh(z)∥Λk

h,n
∥
◦
θh,n(Q

k

h+1)∥Λk
h,n

−1

= ∥ϕh(z)∥Λk
h,n

−1∥
◦
θh,n(Q

k

h+1)∥Λk
h,n

−1

≤ ∥ϕh(z)∥Λk
h,n

−1λ−1∥
◦
θh,n(Q

k

h+1)∥2
≤ ∥ϕh(z)∥Λk

h,n
−1λ−1Rh,n,

where the second inequality comes from the fact that Λk
h,n is the sum of λI and a positive semi-

definite matrix, and the last one from the fact that
◦
θh,n(Q

k

h+1) ∈ Bh,n. The second part comes
from

∥T2kh,n∥Λk
h,n

= ∥Λk
h,n

−1◦
θh,n(Q

k

h+1)∥Λk
h,n

= ∥
◦
θh,n(Q

k

h+1)∥Λk
h,n

−1 ≤ λ−1Rh,n.

The last part of the sum is more complex and, in order to bound it, we need to define a failure event.

B.5 Failure event

For every h, k, n we define the failure event in the following way:

F k
h,n :=

∃V ∈ Vh :

∥∥∥∥∥
k−1∑
t=1

1{ρh(zτh) = n}ϕτhητh(V)

∥∥∥∥∥
Λk

h,n
−1

>
√
βk
h,n

 ,

for a threshold
√
βk
h,n to be defined. The first step to bound the probability of this event is to compute

the covering number of the function space Vh

Proposition 6. The ε−covering number of Vh in infinity norm satisfies

logN (ε,Vh) ≤ O (Nd log (Rh,max/ε)) ,

where Rh,max := supn∈[Nh]
Rh,n.

Proof. Note that the covering number of Vh is not higher than the one of Qh. Indeed, let Qε
h be a

ε−cover for Qh and define
Vε
h := {V (s) = max

a∈A
Q(s, a) : Q ∈ Qε

h}.

Then, taking any V ∈ Vh there is Q ∈ Qh such that V (s) = maxa∈AQ(s, a). At this point, taking

V̂ (s) = max
a∈A

Q̂(s, a),

where Q̂ ∈ Qε
h such that ∥Q− Q̂∥∞ ≤ ε, we have that V̂ ∈ Vε

h by definition and

∥Q− Q̂∥∞ ≤ ∥V − V̂ ∥∞ ≤ ε.

Now, the question is reduced to covering Qh. by definition, every Qh ∈ Qh takes the form

Qh(z) = ϕh(z)
⊤θh,ρh(z),

where ρh : Z → [Nh] and every vector θh,n is dh−dimensional with the norm bounded by Rh,n. As
the domain Z is partitioned into regions Zh,n, if we get a family of coverings Qε

h,n that cover each
function in Qh restricted to the set Zh,n, we can obtain a covering of Qh by defining it in this way

19

Qε
h :=

{
Q : Q|Zh,n

= Qn Qn ∈ Qε
h,n

}
,

i.e., we cover every function Q by taking the nearest cover function on each region. As a result,
the total number of elements in Qε

h corresponds to the product
∏Nh

n=1 |Qε
h,n| of the elements in the

smaller sets, so that we have only to estimate |Qε
h,n| for every n. To this aim, note that the functions

in this set are all linear, as we are restricting to Zh,n, so that, applying a standard bound for the
covering number of spaces of linear functions we can find Qε

h,n such that

|Qε
h,n| = O

(
(Rh,n/ε)

dh
)
.

Therefore, the total covering size amounts to

|Qε
h| = O

(
(sup
n∈[Nh]

Rh,n/ε)
Nd

)
,

which completes the proof.

Theorem 7. For a choice of√
βk
h,n = Õ

(√
dh + log(N (1/

√
k,Vh)) + log(1/δ)

)
,

we have P(F k
h,n) ≤ δ.

Proof. Let Vε
h be a ε cover of Vh in infinity norm, so that |Vε

h| = N (ε,Vh). Now, for every V ∈ Vh

we call
Ṽ ∈ Vε

h : ∥Ṽ − V ∥L∞ ≤ ε.

In this way, we have∥∥∥∥∥
k−1∑
t=1

ρτh,nϕ
τ
hη

τ
h(V)

∥∥∥∥∥
Λk

h,n
−1

=

∥∥∥∥∥
k−1∑
t=1

ρτh,nϕ
τ
h

(
rkh − rh(s

k
h, a

k
h) + V (skh+1)− Es′∼ph(·|skh,ak

h)
[V (s′)]

)∥∥∥∥∥
Λk

h,n
−1

≤
∥∥∥∥∥
k−1∑
t=1

ρτh,nϕ
τ
h

(
rkh − rh(s

k
h, a

k
h) + Ṽ (skh+1)− Es′∼ph(·|skh,ak

h)
[Ṽ (s′)]

)∥∥∥∥∥
Λk

h,n
−1

+

∥∥∥∥∥
k−1∑
t=1

ρτh,nϕ
τ
h

(
V (skh+1)− Ṽ (skh+1)

)∥∥∥∥∥
Λk

h,n
−1

+

∥∥∥∥∥
k−1∑
t=1

ρτh,nϕ
τ
h

(
Es′∼ph(·|skh,ak

h)
[Ṽ (s′)− V (s′)]

)∥∥∥∥∥
Λk

h,n
−1

.

As we have
|V (skh+1)− Ṽ (skh+1)| ≤ ε, |Es′∼ph(·|skh,ak

h)
[Ṽ (s′)− V (s′)]| ≤ ε,

the same argument used in the proof Lemma 1, allows us to bound the last two terms with 2
√
pkh,nε.

The remaining term corresponds, for fixed Ṽ and indicating with Fk
h the filtration generated by all

the events of the process up to step h of episode k, to∥∥∥∥∥∥∥∥
k−1∑
t=1

ρτh,nϕ
τ
h︸ ︷︷ ︸

Fk
h−meas.

(
rkh − rh(s

k
h, a

k
h) + Ṽ (skh+1)− Es′∼ph(·|skh,ak

h)
[Ṽ (s′)]

)
︸ ︷︷ ︸

E[·|Fk
h]=0

∥∥∥∥∥∥∥∥
Λk

h,n
−1

,

20

where the first term is an Rdh−valued stochastic process which is entirely determined by the current
state and current action, while the second is zero-mean conditioned on the rest of the process, and
belongs to [−1, 1] almost surely. Therefore, it is also 1−subgaussian. This last fact allows to apply
Theorem 1 from [1], obtaining with probability at least 1− δ, for fixed Ṽ ,

∥∥∥∥∥
k−1∑
t=1

ρτh,nϕ
τ
h

(
rkh − rh(s

k
h, a

k
h) + Ṽ (skh+1)− Es′∼ph(·|skh,ak

h)
[Ṽ (s′)]

)∥∥∥∥∥
2

Λk
h,n

−1

≤ 2 log

detλI−1/2 detΛk
h,n

1/2

δ

 ≤ dh log(λ
−1) + dh log((1 + kLϕ)) + log(δ−1).

Applying a union bound, it follows that the same result holds for every function in Vε
h if we replace

log(δ−1) with log(N (ε,Vh)/δ). Merging this result with what we have found before, we have that,
with probability at least 1− δ, for all V ∈ Vh, we have

∥∥∥∥∥
k−1∑
t=1

ρτh,nϕ
τ
hη

τ
h(V)

∥∥∥∥∥
Λk

h,n
−1

≤
√
dh log(λ−1) + dh log((1 + kLϕ)) + log(N (ε,Vh)) + log(1/δ)

+ 2
√
pkh,nε.

If we just bound
√
pkh,n ≤

√
k, we can take ε = 1/

√
k to have that the previous is bounded by√

βk
h,n :=

√
dh log(λ−1) + dh log((1 + kLϕ)) + log(N (1/

√
k,Vh)) + log(1/δ) + 2,

which completes the proof.

From this theorem, a simple corollary follows by just taking a union bound over h ∈ [H], n ∈
[Nh], k ∈ [K]:

Corollary 8. For a choice of√
βk
h,n = Õ

(√
dh + log(N (1/

√
k,Vh) + log(NhHK/δ))

)
,

we have

P

 ⋃
h,n,k

F k
h,n

 ≤ δ.

From now on, we are going to indicate the good event E as the opposite of the event defined in the
previous corollary

E :=
⋂

h,n,k

(F k
h,n)

c,

moreover,
√
βk
h,n will always be the quantity defined by Corollary 8. We conclude the section

proving the following

Lemma 3. Under the event E, for any z ∈ Z , any time-step h of episode k and any n, we have

|ϕh(z)⊤T3kh,n| ≤ ∥ϕh(z)∥Λk
h,n

−1

√
βk
h,n,

and, in particular

∥T3kh,n∥Λk
h,n

−1 ≤
√
βk
h,n.

21

Proof. By definition,

|ϕh(z)⊤T3kh,n| =
∣∣∣∣∣ϕh(z)⊤Λk

h,n

−1
k−1∑
t=1

1{ρh(zτh) = n}ϕτhητh(V h+1)

∣∣∣∣∣
≤ ∥Λk

h,n

−1
ϕh(z)∥Λk

h,n

∥∥∥∥∥
k−1∑
t=1

1{ρh(zτh) = n}ϕτhητh(V h+1)

∥∥∥∥∥
Λk

h,n
−1

= ∥ϕh(z)∥Λk
h,n

−1

∥∥∥∥∥
k−1∑
t=1

1{ρh(zτh) = n}ϕτhητh(V h+1)

∥∥∥∥∥
Λk

h,n
−1

.

Under the good event E, we have that the second term is bounded by
√
βk
h,n, for the choice defined

in Corollary 8. The second part comes from the fact that

∥T3kh,n∥Λk
h,n

=

∥∥∥∥∥Λk
h,n

−1
k−1∑
t=1

1{ρh(zτh) = n}ϕτhητh(V h+1)

∥∥∥∥∥
Λk

h,n

=

∥∥∥∥∥
k−1∑
t=1

1{ρh(zτh) = n}ϕτhητh(V h+1)

∥∥∥∥∥
Λk

h,n
−1

≤
√
βk
h,n.

B.6 Quasi-optimal solution and good event

Thanks to the previous result, we are able to show that the quasi-optimal solution is feasible with
high probability.

Theorem 9. Consider the optimization problem (11), where
√
αk
h,n is set to

√
βk
h,n +

√
pkh,n +

λ−1Rh,n. Then, under the good event E, the quasi-optimal solution {θ⋆
h}Hh=1 (see (10)) is feasible

for (11) at any episode k.

Proof. We perform the proof by induction on the time-step h, starting from h = H . Assuming that
for every n ∈ [Nh] the choice θ⋆h+1,n is feasible we have that the choice

Qh+1(z) := Qh+1[θ
⋆
h+1](z)

is also feasible. With this choice, proposition 5 ensures that, for every n,

θh,n =ξh,n +
◦
θh,n(Qh+1[θ

⋆
h+1]) + T1kh,n − T2kh,n + T3kh,n. (15)

Now, to show that also θ⋆
h is feasible, we have to prove that, substituting each θh,n = θ⋆h,n in the

previous equation, we get a value for ξh,n such that ∥ξh,n∥Λk
h,n

≤
√
αk
h,n.

First note that, by definition, θ⋆h,n =
◦
θh,n(Qh+1[θ

⋆
h+1]), so that the previous equation simplifies to

−ξh,n =T1kh,n − T2kh,n + T3kh,n. (16)
At this point we have by triangular inequality

∥ξh,n∥Λk
h,n

≤ ∥T1kh,n∥Λk
h,n

+ ∥T2kh,n∥Λk
h,n

+ ∥T3kh,n∥Λk
h,n

(17)

≤
√
pkh,nI + λ−1Rh,n +

√
βk
h,n (18)

=
√
αk
h,n. (19)

22

where the second comes from Lemmas 1, 2 and 3. This completes the proves that each θ⋆h,n is feasible,
meaning that also θ⋆

h is, and completes the inductive step.

From the feasibility of θ⋆
h a simple corollary follows

Corollary 10. Under the good event E, at each episode k, the V−function V
k

1(·) estimated from θ1

as solution of solution of the optimization problem (11) satisfies

∀s ∈ S V ⋆
1 (s)− V

k

1(s) ≤ (H − 1)I.

Proof. By design of the optimization problem, and the fact {θ⋆
h}Hh=1 is feasible under E, we have

V
k

1(s) ≥ V [θ⋆
1](s).

Now, we have

V ⋆
1 (s)− V

k

1(s) ≤ V ⋆
1 (s)− V [θ⋆

1](s)

= max
a∈A

Q⋆
1(s, a)−max

a∈A
Q[θ⋆

1](s, a)

≤ max
a∈A

Q⋆
1(s, a)−Q[θ⋆

1](s, a)

≤ ∥Q⋆
1(·)−Q[θ⋆

1](·)∥L∞ ≤ (H − 1)I,
where the last passage is possible by theorem 4.

Moreover, we are also able to prove that the solution found by the optimization algorithm (11) is an
"almost fixed" point of the Bellman optimiality operator.

Proposition 11. Under the good event E, the Q−function computed with the optimization algorithm
at each step k satisfies Outside of the failure event, we have

∀z ∈ Z
∣∣∣Qk

h(z)− Th[Q
k

h+1](z)
∣∣∣ ≤ I + 2

√
αk
h,ρh(z)

∥ϕh(z)∥Λk
h,ρh(z)

−1 .

Proof. By Proposition 5, we have, taking n := ρh(z),

|Qk

h(z)− Th[Q
k

h+1](z)| ≤ |ϕh(z)⊤θh,n − Th[Qh+1](z)|
+
∣∣ϕh(z)⊤(ξh,n + T1kh,n − T2kh,n + T3kh,n)

∣∣
≤ I +

∣∣ϕh(z)⊤ξh,n∣∣+ ∣∣ϕh(z)⊤T1kh,n∣∣
+
∣∣ϕh(z)⊤T2kh,n∣∣+ ∣∣ϕh(z)⊤T3kh,n∣∣ .

The first term satisfies, by the constrain in the program,∣∣ϕh(s, a)⊤ξh,n∣∣ ≤ ∥ξh,n∥Λk
h,n

∥ϕh(s, a)∥Λk
h,n

−1 ≤
√
αk
h,n∥ϕh(s, a)∥Λk

h,n
−1 .

The other terms satisfy, thanks to lemmas 1,2,3, satisfies

∣∣ϕh(z)⊤T1kh,n∣∣+ ∣∣ϕh(z)⊤T2kh,n∣∣+ ∣∣ϕh(z)⊤T3kh,n∣∣ ≤√αk
h,n∥ϕh(s, a)∥Λk

h,n
−1 .

C Regret bound

Using all the results that we have proved, we can finally bound the regret

Theorem 12. Under event E, CINDERELLA, for λ = 1 achieves a regret bound of order

RK ≤ Õ
(

H∑
h=1

√
KNh

(
(Lϕ +

√
dh) sup

n
Rh,n + dh +

√
dh log(N (1/

√
K,Vh))

)
+KHI

√
dh

)
.

23

Proof. By Corollary 10, the regret is bounded by

RK =

K∑
k=1

V ∗
1 (s

k
1)− V πk

1 (sk1) ≤ KHI +

K∑
k=1

V
k

1(s
k
1)− V πk

1 (sk1).

Note that, under the good event,

V
k

h(s
k
h)− V πk

h (skh) = Q
k

h(z
k
h)− V πk

h (skh)

Prop. 11
≤ I + 2

√
αk
h,ρh(zk

h)
∥ϕh(zkh)∥Λk

h,ρh(zk
h
)

−1 + Th[Q
k

h+1](z
k
h)− V πk

h (skh)

= I + 2
√
αk
h,ρh(zk

h)
∥ϕh(zkh)∥Λk

h,ρh(zk
h
)

−1 + Es′∼ph(·|zk
h)
[V

k

h+1(s
′)− V πk

h+1(s
′)].

Now, if we define the quantity

ζkh := Es′∼ph(·|skh,ak
h)
[V

k

h+1(s
′)− V πk

h+1(s
′)]− V

k

h+1(s
k
h+1) + V πk

h+1(s
k
h+1),

we can rewrite the previous relation as a telescopic sum:

V
k

1(s
k
1)− V πk

1 (sk1) ≤ I + 2
√
αk
1,ρh(zk

1)
∥ϕ1(zk1)∥Λk

1,ρ1(zk1)

−1 + Es′∼p1(·|zk
1)
[V

k

2(s
′)− V πk

2 (s′)]

= I + 2
√
αk
1,ρh(zk

1)
∥ϕ1(zk1)∥Λk

1,ρ1(zk1)

−1 + ζk1 + V
k

2(s
k
2)− V πk

2 (sk2)︸ ︷︷ ︸
same quantity at next time step

≤ HI +

H∑
h=1

2
√
αk
h,ρh(zk

h)
∥ϕh(zkh)∥Λk

h,ρh(zk
h
)

−1 + ζkh .

This equation allows us to bound the regret, under the good event, as

RK ≤ KHI +

K∑
k=1

H∑
h=1

2
√
αk
h,ρh(zk

h)
∥ϕh(zkh)∥Λk

h,ρh(zk
h
)

−1 + ζkh .

We start from the last term, which we rewrite, by exchanging the index of the sums as

K∑
k=1

H∑
h=1

ζkh =

H∑
h=1

K∑
k=1

ζkh .

For fixed h the term ζkh is a martingale difference and, if it is bounded almost surely in [−C,C] for
some constant C > 0, we can apply Hoeffding’s inequality to prove that w.p. at least 1− δ,

−2C
√
K log(1/δ) ≤

K∑
k=1

ζkh ≤ 2C
√
K log(1/δ).

In our case, due to our problem definition we have that C may be chosen as Lϕ supn Rh,n. Imposing
that the previous inequality works at every step at the same time, and summing over h, we get, w.p.
1− δ,

H∑
h=1

K∑
k=1

ζkh ≤ 2
√
K log(H/δ)

H∑
h=1

Lϕ sup
n

Rh,n. (20)

Now, we go on bounding the other term

24

K∑
k=1

H∑
h=1

2
√
αk
h,ρh(zk

h)
∥ϕh(zkh)∥Λk

h,ρh(zk
h
)

−1 =

H∑
h=1

K∑
k=1

2
√
αk
h,ρh(zk

h)
∥ϕh(zkh)∥Λk

h,ρh(zk
h
)

−1

≤
H∑

h=1

√
K

√√√√ K∑
k=1

4αk
h,ρh(zk

h)
∥ϕh(zkh)∥2Λk

h,ρh(zk
h
)

−1 (21)

Where the last passage is due to the Cauchy-Schwartz inequality. The last sum can be rewritten by
summing over the regions instead of the episodes:

K∑
k=1

4αk
h,ρh(zk

h)
∥ϕh(zkh)∥2Λk

h,ρh(zk
h
)

−1 =

Nh∑
n=1

pK
h,n∑

in=1

4αin
h,n∥ϕh(zinh)∥2

Λin
h,n

−1 ,

where the index in enumerates the episodes k where zkh ∈ Zh,n. At this point, recall that we have set√
αk
h,n =

√
βk
h,n +

√
pkh,n + λ−1Rh,n, so that, in particular

αk
h,n ≤ 3βk

h,n + 3pkh,n + 3λ−1Rh,n

≤ 3pkh,nI2 + 3d+ 3 log(N (1/
√
k,Vh)) + 3 log(1/δ) + 3λ−1Rh,n.

This way, the previous sum
∑Nh

n=1

∑pK
h,n

in=1 4α
in
h,n∥ϕh(zinh)∥2

Λin
h,n

−1 can be again decomposed in few

terms, according to the decomposition of αk
h,n.

12

Nh∑
n=1

pK
h,n∑

in=1

pKh,nI2∥ϕh(zinh)∥2
Λin

h,n

−1 = 12

Nh∑
n=1

pKh,nI2

pK
h,n∑

in=1

∥ϕh(zinh)∥2
Λin

h,n

−1 .

Note that, by construction of the matrix Λin
h,n, we can use Lemma 11 from [1] to have

pK
h,n∑

in=1

∥ϕh(zinh)∥2
Λin

h,n

−1 ≤ 2dh log((λ+ pKh,nL
2
ϕ/dh))− log(det(λI))),

where by fixing λ = 1 we have

pK
h,n∑

in=1

∥ϕh(zinh)∥2
Λin

h,n

−1 ≤ 2dh log((1 + pKh,nL
2
ϕ/dh)) ≤ 2dh log(KL

2
ϕ + 1).

Therefore, we can bound the whole term as

12

Nh∑
n=1

pK
h,n∑

in=1

pKh,nI2∥ϕh(zinh)∥2
Λin

h,n

−1 ≤ 12

Nh∑
n=1

pKh,nI22dh log(KL
2
ϕ + 1)

= 24KI2dh log(KL
2
ϕ + 1). (22)

The remaining terms can be bounded in a simpler way: by just calling Ψ := dh+log(N (1/
√
k,Vh))+

log(1/δ) +Rh,n, we have

25

Nh∑
n=1

pK
h,n∑

in=1

12Ψ∥ϕh(zinh)∥2
Λin

h,n

−1 = 12Ψ

Nh∑
n=1

pK
h,n∑

in=1

∥ϕh(zinh)∥2
Λin

h,n

−1

≤ 12Ψ

Nh∑
n=1

2dh log(KL
2
ϕ + 1)

≤ 24ΨNhdh log(KL
2
ϕ + 1),

where we have used Lemma 11 by [1] as before. This result, together with Equation (22) can be
inserted into the previous Equation (21) to get

K∑
k=1

H∑
h=1

2
√
αk
h,ρh(zk

h)
∥ϕh(zkh)∥Λk

h,ρh(zk
h
)

−1 ≤
H∑

h=1

√
K

√√√√ K∑
k=1

4αk
h,ρh(zk

h)
∥ϕh(zkh)∥2Λk

h,ρh(zk
h
)

−1

≤
√
24

H∑
h=1

√
K
√
(KI2 +ΨNh)dh log(KL2

ϕ + 1)

≤
√
24

H∑
h=1

(KI +
√
ΨNhK)

√
dh log(KL2

ϕ + 1).

Therefore, the full bound on the reget can be written, also thanks to Equation (20) as

RK ≤ 2
√
K log(H/δ)

H∑
h=1

Lϕ sup
n

Rh,n +
√
24

H∑
h=1

(KI +
√
ΨNhK)

√
dh log(KL2

ϕ + 1).

Ignoring terms that are logarithmic in K,H,Lϕ, 1/δ and passing to the Õ notation, we get

RK ≤ Õ
(
√
K

H∑
h=1

(Lϕ sup
n

Rh,n +
√
dhΨNh) +KHI

√
dh

)
.

Now, note that by definition Ψ := dh + log(N (1/
√
k,Vh)) + log(1/δ) +Rh,n, so the previous can

be rewritten as

RK ≤ Õ
(
√
KN

H∑
h=1

(
(Lϕ +

√
dh) sup

n
Rh,n + dh +

√
dh log(N (1/

√
K,Vh))

)
+KHI

√
dh

)
.

Merging the previous result with Proposition 6, which bounds the size of the covering, and the fact
that the good event is designed to have probability at least 1− δ (Corollary 8), we get

Corollary 13. Assume that Lϕ = O(1) and suph∈[H],n∈[Nh]
Rh,n = O(

√
dh). Then, with probabil-

ity at least 1− δ, CINDERELLA (Algorithm 1), with λ = 1 achieves a regret bound of order

RK = Õ
(

H∑
h=1

Nhdh
√
K +

H∑
h=1

√
dhIK

)
.

26

D Computational complexity

In this section, we are going to study the computational complexity of CINDERELLA (Algorithm 1).
The key computational bottleneck lies in solving the constrained continuous optimization problem
presented in Equation 7. Two obstacles hinder efficient solutions to this problem.

1. In the first constrain, there is one term containing maxa∈A ϕh+1(s
τ
h+1, a)

⊤θh+1,ρ(sτh+1,a)
,

which breaks linearity in θh+1,n.

2. In the third one, ∥ξh,n∥Λk
h,n

≤
√
αk
h,n breaks the linearity also in ξh,n.

The confluence of these two challenges renders the problem computationally intractable. This is
unsurprising, as even the optimization problem in ELEANOR [41], a simplified version of ours, is
well-known for its computational difficulty. Fortunately, our setting allows for an inherent Bellman
error, denoted by I. This enables us to forego an exact solution to problem 7 and instead seek an
approximate solution. The resulting approximation error, denoted by ε, can be incorporated into the
Bellman error term. From theorem 1 we deduce that if ε = O(K−1/2), its dependence in the regret
bound is negligible. Therefore, a viable approach might involve constructing an ε-grid, denoted by G,
over the variable space for ε ≈ K−1/2 and then to solve the problem with exhaustive search on G.
This idea is not completely satisfying, as the cardinality of G would be of order

|G| = O
(
(
√
K)3

∑H
h=1 Nhdh

)
,

since we have three optimization variables θ̂h,n, ξh,n, θh,n of dimension dh for every n ∈ [Nh].
Unfortunately, at this level of generality, no strategy with polynomial computational complexity is
known. As a comparison, algorithms presented in table 1 are not better. LEGENDRE-ELEANOR [24]
is based on ELEANOR, so it is also intractable, GOLF [17] and NET-Q-LEARNING [34] require an
optimization oracle. LEGENDRE-LSVI [24] and KOVI [40] can be implemented efficiently, but
work only for simpler settings.

E Mildly Smooth MDPs

In this section, we give our results for Mildly Smooth MDPs. First, we have to start from some notion
from calculus.

E.1 Smoothness of real functions

Let Ω ⊂ [−1, 1]d and f : Ω → R. We say that f ∈ Cν(Ω), for ν ∈ (0,+∞) if it is ν∗−times
continuously differentiable for ν∗ := ⌈ν − 1⌉, and there is a constant Lν(f) such that

∀α : |α| = ν∗,∀x, y ∈ Ω, |Dαf(x)−Dαf(y)| ≤ Lν(f)∥x− y∥ν−ν∗
∞ ,

where α is a multi-index, i.e. a tuple of non-negative integers (α1, . . . αd) and the multi-index
derivative is defined as follows

Dαf :=
∂α1+...+αd

∂xα1
1 . . . ∂xαd

d

.

The previous set becomes a metric space when endowed with the following norm

∥f∥Cν := max

{
max
|α|≤ν∗

∥Dαf∥L∞ , Lν(f)

}
.

Note that, when ν ∈ N, the previous norm simplifies as

∥f∥Cν = max
|α|≤ν

∥Dαf∥L∞ ,

27

since the Lipschitz constant Lν(f) of the derivatives up to order ν∗ = ν − 1 corresponds exactly to
the upper bound of the derivatives of order ν (which exist as a Lipschitz function is differentiable
almost everywhere). For these values of ν, the spaces defined here are equivalent to the spaces
Cν−1,1(Ω) defined in [24].

The following approximation results hold true for this function space.
Theorem 14. Let us consider the Taylor polynomial T ν∗

y [f](·) centered in y ∈ Ω of order ν∗. This
can be written as

T ν∗
y [f](x) =

∑
∥α∥1≤ν∗

Dαf(y)

α!
(x− y)α.

Then,
∀x ∈ Ω, |f(x)− T ν∗

y [f](x)| ≤ Lν(f)∥x− y∥ν∞.

As this formulation has the form of a scalar product over ∥α∥1 ≤ ν∗ of one vector with components
Dαf(y)

α! and another of components (x− y)α, we rewrite it in the following form

T ν∗
y [f](x) =

∑
∥α∥1≤ν∗

Dαf(y)

α!
(x− y)α =: w⊤ψν∗

y (x). (23)

Here, note that the length of the two vectors corresponds to |{α ∈ Nd : ∥α∥1 ≤ ν∗}| =
(
ν∗+d

d

)
≤ νd∗ .

Moreover, the first only depends on f , while the second depends on x.

With all this notation settled, we can define what we call a Mildly Smooth MDP.

E.2 Between Weak and Strong

We call Mildly Smooth MDP a process where the Bellman optimality operator outputs functions that
are smooth.
Definition 5. (Mildly Smooth MDP). An MDPs is Mildly Smooth of order ν if, for every h ∈ [H],
the Bellman optimality operator Th is bounded on L∞(Z) → Cν(Z).

Boundedness over L∞(Z) → Cν(Z) means that the operator transforms functions that are bounded
L∞(Z) into functions that are ν-times differentiable. Moreover, there exists a constant CT < +∞
such that ∥Thf∥Cν ≤ CT (∥f∥L∞ + 1) for every h ∈ [H] and every function f ∈ Cν(Z).

To determine how strong our assumptions are when compared to the literature, we prove the following
considerations.

E.3 Relation between the settings

ν−Kernelized ⊂ ν−Mildly Smooth. Given the definitions of the two MDP families, this point
reduces to proving that the RKHS generated by the Matérn kernel of parameter ν > 0 is a subspace
of Cν(Ω).

Theorem 8, part (3) from [10] ensures that, for isotropic kernels, in order to have sample path
∈ Cν(Ω), a sufficient condition is for the kernel to be in C2ν(Ω2). The same theorem also shows
(proof of Proposition 10) that the Matérn kernel can be written as

Mν(x, y) ∝ (f1(∥x− y∥22) + ∥x− y∥2ν2 f2(∥x− y∥22)),

where f1, f2 ∈ C∞(R). Note that,

∥x− y∥22 =

d∑
i=1

(xi − yi)
2 ∈ C∞(Ω2),

so that f1(∥ · − · ∥22), f2(∥ · − · ∥22) ∈ C∞(Ω2). Therefore, these two terms do not affect the overall
smoothness of the kernel. This implies that the order of smoothness of Mν(x, y) corresponds to the
one of ∥x− y∥2ν2 which is (perhaps the most basic example of) C2ν(Ω2). This ends the proof.

28

For ν ∈ N, ν−Mildly Smooth ⊂ (ν − 1)−Weakly Smooth. This part is obvious; indeed, as for
every function we have ∥f∥L∞ ≤ ∥f∥Cν−1,1 (where the last norm is defined in [24]), we have

∥Thf∥Cν−1,1 = ∥Thf∥Cν ≤ CT (∥f∥L∞ + 1) ≤ CT (∥f∥Cν−1,1 + 1),

where in the first passage we have used the fact that for ν integer ∥ · ∥Cν−1,1 = ∥ · ∥Cν and in the
second we have used the definition of ν − 1 Mildly-smooth MDP.

For ν ∈ N, (ν − 1)−Strongly Smooth ⊂ ν−Mildly Smooth. Let us assume an MDP is Strongly
Smooth. Indeed, for every function f : S ×A → R we have:

Thf(s, a) = rh(s, a) + Es′∼ph(·|s,a)[max
a′∈A

f(s′, a′)]

= rh(s, a) +

∫
S
max
a′∈A

f(s′, a′)ph(s
′|s, a) ds′.

By triangular inequality, this entails:

∥Thf∥Cν ≤ ∥r∥Cν +

∥∥∥∥∫
S
max
a′∈A

f(s′, a′)ph(s
′|·) ds′

∥∥∥∥
Cν

,

where the first term ∥r∥Cν = ∥r∥Cν−1,1 (remember that ν is integer) is bounded by assumption and so
we can focus on the second one. As all the functions involved are bounded, we can apply the theorem
of exchange between integral and derivative [14] and we have, for every multi-index with |α| ≤ ν:

Dα

∫
S
max
a′∈A

f(s′, a′)ph(s
′|·) ds′ =

∫
S
max
a′∈A

f(s′, a′)Dαph(s
′|·) ds′. (24)

Using the abbreviation f̃(s′) = maxa′∈A f(s′, a′) we get:

∥∥∥∥∫
S
f̃(s′)ph(s

′|·) ds′
∥∥∥∥
Cν

= max
|α|≤ν

∥∥∥∥Dα

∫
S
f̃(s′)ph(s

′|·) ds′
∥∥∥∥
L∞

= max
|α|≤ν−1

L1

(
Dα

∫
S
f̃(s′)ph(s

′|·) ds′
)

= max
|α|≤ν−1

sup
z1,z2∈Z

Dα
∫
S f̃(s

′)ph(s′|z1) ds′ −Dα
∫
S f̃(s

′)ph(s′|z2) ds′
∥z1 − z2∥∞

= max
|α|≤ν−1

sup
z1,z2∈Z

∫
S f̃(s

′)(Dαph(s
′|z1)−Dαph(s

′|z2)) ds′
∥z1 − z2∥∞

≤ sup
z1,z2∈Z

∫
S f̃(s

′)Cp∥z1 − z2∥∞ ds′

∥z1 − z2∥∞
≤ Vol(S)Cp∥f̃∥L∞

Where the first step is the definition of ∥ · ∥Cν , the second comes from the fact that, as we pointed out
before, if a function f is Lipschitz the ∥ · ∥L∞ of its derivative corresponds to its Lipschitz constant,
the third from definition of Lipschitz constant, the fourth by linearity of the derivative, the fifth one by
definition of strongly (ν − 1)−smooth process (the part about ph) and the last one by just bounding
the integral with the infinity norm times the measure of the set.

For ν ∈ N, there is an MDP that is ν−Mildly Smooth but not (ν−1)−Strongly Smooth. Define
an MDP where

• S = A = [−1, 1], so that Z = [−1, 1]2.

• rh(z) = 0 everywhere (any smooth function would have worked as well).

29

• ph(·|s, a) = Unif(βs, βs+ 1− β) for some β ∈ (0, 1).

Note that this transition function is well defined, as both βs, βs+ 1− β are in [−1, 1] but it is not
even continuous, as its density corresponds to

ph(s
′|s, a) = 1[βs,βs+1−β](s

′)

1− β
.

Still, we can show that this process is Mildly smooth for ν = 1. Indeed, take every f ∈ L∞. We have

∥T ∗
h f∥C1 = max

{
max
|α|≤0

∥DαT ∗
h f∥L∞ , Lν(T ∗

h f)

}
= max {∥T ∗

h f∥L∞ , L1(T ∗
h f)} .

The first part ∥T ∗
h f∥L∞ is bounded by ∥f∥L∞ by the non-expansivity of Bellman operator. The

second one corresponds to

L1(T ∗
h f) = sup

z1,z2∈Z

T ∗
h f(z1)− T ∗

h f(z2)

∥z1 − z2∥∞
.

We have, calling f̃(s′) = maxa′∈A f(s′, a′) (recall that reward is constant),

sup
z1,z2∈Z

T ∗
h f(z1)− T ∗

h f(z2)

∥z1 − z2∥∞
= sup

z1,z2∈Z

∫
S f̃(s

′)ph(s′|z1) ds′ −
∫
S f̃(s

′)ph(s′|z2) ds′
∥z1 − z2∥∞

= sup
z1,z2∈Z

∫
S f̃(s

′)(ph(s′|z1)− ph(s
′|z2)) ds′

∥z1 − z2∥∞
.

We can now evaluate the numerator explicitly:

∫
S
f̃(s′)(ph(s

′|s1, a1)− ph(s
′|s2, a2)) ds′ =

∫
S
f̃(s′)

(
1[βs1,βs1+1−β](s

′)

1− β
− 1[βs2,βs2+1−β](s

′)

1− β

)
ds′

=

∫
S
f̃(s′)

1[βs1,βs1+1−β](s
′)

1− β
ds′

−
∫
S
f̃(s′)

1[βs2,βs2+1−β](s
′)

1− β
ds′

=
1

1− β

(∫ βs1+1−β

βs1

f̃(s′) ds′ −
∫ βs2+1−β

βs2

f̃(s′) ds′
)
.

Now, note that the function g(s) :=
∫ βs+1−β

βs
f̃(s′) ds′ has a derivative bounded by 2∥f̃∥L∞ in

absolute value: indeed, from the fundamental theorem of calculus,

|g′(s)| = |f̃(βs+ 1− β)− f̃(βs)| ≤ 2∥f̃∥L∞ ,

so that it is 2∥f̃∥L∞ Lipschitz continuous. Substituting in the previous equation we get

∫
S
f̃(s′)(ph(s

′|s1, a1)− ph(s
′|s2, a2)) ds′ ≤

1

1− β

(∫ βs1+1−β

βs1

f̃(s′) ds′ −
∫ βs2+1−β

βs2

f̃(s′) ds′
)

=
1

1− β
(g(s1)− g(s2)) ≤

2∥f̃∥L∞

1− β
∥s1 − s2∥L∞ .

30

This proves that

sup
z1,z2∈Z

T ∗
h f(z1)− T ∗

h f(z1)

∥z1 − z2∥∞
= sup

z1,z2∈Z

∫
S f̃(s

′)(ph(s′|z1)− ph(s
′|z2)) ds′

∥z1 − z2∥∞

≤ sup
z1,z2∈Z

2∥f̃∥L∞

1−β ∥s1 − s2∥∞
∥z1 − z2∥∞

=
2∥f̃∥L∞

1− β
≤ 2

1− β
∥f∥L∞ .

Where the passage after the first inequality holds since ∥s1 − s2∥∞ ≤ ∥z1 − z2∥∞ (equality holds
taking the supremum over z1, z2 as it is sufficient to have a1 = a2 to enforce exactly ∥s1 − s2∥∞ =

∥z1 − z2∥∞) and the second is due to the fact that being f̃(s′) = maxa′∈A f(s′, a′) we have
∥f̃∥L∞ ≤ ∥f∥L∞ . This proves that the process is ν−Mildly for ν = 1, while we have seen that this
is not 0−strongly smooth.

The relation between the different settings is depicted in Figure2.

E.4 Regret bound for Mildly smooth MDPs

As clarified in the main paper, we are going to see that for a proper choice of the partition Uh and
of the feature map ϕh, any Mildly Smooth MDP belongs to the Locally Linearizable representation
class. We start with the following consideration: as Z ⊂ [−1, 1]d we can find, for all ε, a set Zε

which forms an ε-cover of Z in infinity norm, such that |Zε| =: N ≤ (2/ε)d.

Now, we define the elements of the partition and feature map in the following way. Note that, even
if we could make all the elements depend on h, we omit this dependence as it turns out not to be
necessary.

1. Now, for every zn ∈ Zε, we define recursively Zn to be the set of points which are covered
by zn, formally:

Z1 := {z ∈ Z : ∥z − z1∥∞ ≤ ε}, Zn := {z ∈ Z : ∥z − zn∥∞ ≤ ε} \ ∪n−1
ℓ=1 Zℓ.

As this sets form a partition of Z , we can take U = {Zn}Nn=1.

2. Let ρ(·) be the function mapping each point of Z to the corresponding Zn. We define our
feature map starting from equation (23) as

ϕ(z) := ψν∗
ρ(z)(z), (25)

so that its length corresponds exactly to dν∗ :=
(
ν∗+d

d

)
.

We can prove the following fundamental result.

Theorem 15. For any f ∈ Cν(Z), there are θ1, . . . θn, . . . θN , all in Rdν∗ , such that

∥f(·)− ϕ(·)⊤θρ(·)∥L∞ ≤ Lν(f)ε
ν .

Moreover, the components of each of the vectors θn satisfy

|θn[α]| ≤
{∥f∥L∞ α = 0

∥f∥Cν α ̸= 0.

Proof. Let z ∈ Z and n = ρ(z). Then, if we take θn to be the vector with components

θn[α] =
Dαf(zn)

α!
,

we have,

31

|f(z)− ϕ(z)⊤θρ(z)| = |f(z)− ϕ(z)⊤θn|

=

∣∣∣∣∣∣f(z)−
∑

∥α∥1≤ν∗

Dαf(zn)

α!
(x− zn)α

∣∣∣∣∣∣
= |f(z)− T ν∗

zn [f](z)| ,

where we have used both the definitions of ϕ and θn. Then, using Theorem 14, we have

|f(z)− ϕ(z)⊤θρ(z)| = |f(z)− T ν∗
zn [f](z)|

≤ Lν(f)∥z − zn∥ν∞.

By definition of Zε, we have ∥z − zn∥∞ = ∥z − ρ(z)∥∞ ≤ ε, which entails the first part of the
thesis. For what concerns the second one, we bound the magnitude of the vectors θn component by
component:

|θn[α]| =
∣∣∣∣Dαf(zn)

α!

∣∣∣∣ ≤ |Dαf(zn)| ≤
{∥f∥L∞ α = 0

∥f∥Cν α ̸= 0
,

where the last comes from the definition of ∥f∥Cν

Theorem 16. Let M be a Mildly Smooth MDP, and ε ≤ 1/(2CTH)1/ν . Then, setting

1. Zh,n as in Equation (8),

2. ϕh to be the feature map defined in Equation (25),

the tuple (M, {Zh,n}n,h, {ϕh}h) is an Locally Linearizable MDP with

• Lϕ = 1 + 2
√
dν∗ .

• Rh,n = 2
√
dν∗CT .

• I ≤ 2CT εν .

Proof. Let us define the sets

Bh,n :=
{
θ ∈ Rdν∗ : ∥ϕh(·)⊤θ∥L∞(Zn) ≤ Ah, ∥θ∥∞ ≤ A′

h

}
, (26)

where L∞(Zn) stands for the supremum norm restriceted to Zn. Now, let Qh+1[θh+1](z) =

ϕ(z)⊤θρ(z) with θh+1 ∈ Bh+1 for a set Bh+1 =×N

n=1
Bh+1,n. Two facts hold:

1. By the non-expansivity of the Bellman optimality operator we have
∥ThQh+1[θh+1]∥L∞ ≤ ∥Q[θh+1]∥L∞ ≤ Ah+1. (27)

2. By the Mildly smooth assumption (Asm. 5), we have
∥ThQh+1[θh+1]∥Cν ≤ CT (∥Qh+1[θh+1]∥L∞ + 1) ≤ CT (1 +Ah+1). (28)

Now, we can prove the low inherent Bellman error property (Eq. 9). To do this we apply Theorem 15
which guarantees that there are θ1, . . . θn, . . . θN , all in Rdν∗ , such that

∥ThQh+1[θh+1](·)− ϕh(·)⊤θρ(·)∥L∞ ≤ Lν(ThQ[θh+1])ε
ν .

Thus, if we take θh as the matrix stacking all these θ1, . . . θn, . . . θN , we get that the inherent Bellman
error is bounded by

I ≤ Lν(ThQ[θh+1])ε
ν ≤ ∥ThQ[θh+1]∥Cνεν ≤ CT (1 +Ah+1)ε

ν .

What is missing is to prove that this choice satisfies θh ∈ Bh.

32

By triangular inequality, we have the following bound on the supremum norm
∥Qh[θh](·)∥L∞ = ∥ThQh+1[θh+1](·)−Qh[θh](·)∥L∞ + ∥ThQh+1[θh+1](·)∥L∞

≤ I + ∥ThQh+1[θh+1](·)∥L∞

≤ I + ∥Qh+1[θh+1](·)∥L∞

≤ CT (1 +Ah+1)ε
ν +Ah+1.

We apply again Theorem 15 having that the components of the θh,n which form θh satisfy

|θh,n[α]| ≤
{∥ThQh+1[θh+1]∥L∞ ≤ ∥ThQh+1[θh+1]∥Cν α = 0

∥ThQh+1[θh+1]∥Cν α ̸= 0,

which means, by Equation (28), that
|θh,n[α]| ≤ CT (1 +Ah+1),

so that, trivially, we have ∥θh,n∥∞ ≤ CT (1+Ah+1). Therefore, Equation (26) requires the condition

Ah ≥ CT (1 +Ah+1)ε
ν +Ah+1 A′

h ≥ CT (1 +Ah+1).

If we set ε ≤ 1/(2CTH)1/ν , the previous inequalities are satisfied if we set

Ah =
H − h

H
A′

h = 2CT .

Indeed, we have

Ah =
H − h

H

=
H − h− 1

H
+

1

H

= Ah+1 +
1

H

= Ah+1 +
2CT
2CTH

≥ Ah+1 + 2CT ε
ν

≥ Ah+1 + CT (1 +
H − h− 1

H
)εν

= Ah+1 + CT (1 +Ah+1)ε
ν .

For what concerns the other term we can simply write

A′
h = 2CT ≥ CT (1 +Ah+1).

This allows us to say that

Rh,n = diam(Bh,n) ≤
√
dν∗A

′
h = 2

√
dν∗CT ,

where the presence of
√
dν∗ is needed to pass from the ∞−norm in the definition of Bh,n to the norm

two in the definition of diam(Bh,n). Instead, for the feature map we have
Lϕ = sup

z∈Z
∥ϕ(z)∥2

= sup
z∈Z

∥ϕ(z)∥2

= sup
z∈Z

∥ψν∗
ρ(z)(z)∥2,

33

as from Definition 25. Note that, looking at the precise definition of ψν∗
y (z) in (23), calling ρ(z) = n,

this norm can be explicitly written as

∥ψν∗
n (z)∥2 =

√ ∑
∥α∥1≤ν∗

(z − zn)2α

≤ 1 +

√ ∑
1≤∥α∥1≤ν∗

(z − zn)2α

≤ 1 +

√ ∑
1≤∥α∥1≤ν∗

22 = 1 + 2
√
dν∗ .

Where the third passage is due to the fact that ∥z−zn∥∞ ≤ 2 as we have assumed Z = [−1, 1]2.

As a consequence, merging the previous result with Theorem 12, we get the following result.

Corollary 17. Under the previous assumptions, with probability at least 1− δ, Algorithm 11, for
λ = 1 achieves a regret bound of order

RK ≤ Õ
(
HCT dν∗N

√
K +HCT d

1/2
ν∗
ενK

)
.

Note that, with this choice we have N ≤ (2/ε)d and d = dν∗ . Using this consideration, we can state
our final regret bound, which only relies on choosing the optimal value for N in the previous result.
From the previous result, if ε ≤ 1/(2CTH)1/ν , Algorithm 11 achieves a regret bound of order

RK ≤ Õ
(
HCT dν∗N

√
K +HCT d

1/2
ν∗
ενK

)
.

Let us now set ε = K−β . The order of the regret bound in K corresponds to

RK = O(K1/2+βd +K1−βν).

Imposing that the two exponents are equal corresponds to setting

βd = 1/2− βν =⇒ β =
1

2d+ 2ν
.

Therefore, choosing ε = K− 1
2d+2ν , which corresponds to N = O(K

d
2d+2ν). We formalize this

reasoning in our last and main theorem.

Theorem 18. Let M be a Mildly smooth MDP. With probability at least 1 − δ, Algorithm 11, for
λ = 1 achieves a regret bound of order

RK ≤ Õ
(
Hdν∗K

ν+2d
2ν+2d +H

2ν+2d
ν

)
.

Proof. Let us set ε = K− 1
2d+2ν and, consequently, N = O(K

d
2d+2ν). Then, two scenarios may

happen

1. If ε ≤ 1/(2CTH)1/ν , Corollary 17 ensures a regret bound of order

RK ≤ Õ
(
HCT dν∗N

√
K +HCT d

1/2
ν∗
ενK

)
= Õ

(
HCT dν∗K

ν+2d
2ν+2d

)
.

2. ε > 1/(2CTH)1/ν , the regret is trivially bounded by K. Still, as we have chosen ε =

K− 1
2d+2ν , the previous inequality entails K ≤ (2CTH)

2ν+2d
ν . Therefore, the regret is

bounded by the same quantity.

This completes the proof.

34

E.5 Discussion on d

A possible criticism to our main result (Theorem 3) is that the regret bound grows linearly with the
feature map dimension

dν∗ =

(
ν∗ + d

ν∗

)
,

which is exponential in d, the dimension of Z .

While this phenomenon may be scary, this dependence is negligible w.r.t. the one on K in any
learnable regime. To see this, note that, in the much easier bandit setting, where H = 1 and there is
no ph(·) function, [23] shows a lower bound which, for ν = 1, writes as

RK = Ω
(
K

1+d
2+d

)
.

Now, let us assume that d ≳ β log(K) for some constant β > 0. We have

RK = Ω
(
K

1+d
2+d

)
= Ω

(
K

1+β log(K)
2+β log(K)

)
= Ω

(
K1− 1

2+β log(K)

)
≥ Ω

(
K1− 1

β log(K)

)
= Ω

(
K · e

− log(K)
β log(K)

)
= Ω

(
K · e−1/β

)
= Ω(K) .

This lower bound shows that our problem is not learable unless d = o(log(K)). In such case,
dν∗ =

(
ν∗+d
ν∗

)
= o

(
νd
)
= o(T β) for every β > 0.

E.6 Final considerations

We end the paper by making a short list of some results in the state-of-the-art for continuous MDPs
that have been improved with the last theorem. All this result are valid with high probability.

• For kernelized RL with Matérn kernel, the best known regret bound is [40], which ensures

RK ≤ Õ
(
H2K

ν+3d/2
2ν+d

)
,

which is super-linear for 2d > ν.

• For Strongly Smooth MDPs, Theorem 2 from [24] provided a regret bound of

RK ≤ Õ
(
H3/2K

ν+2d
2ν+d

)
,

which is super-linear for d > ν.

• Mildly Smooth MDPs, although just defined in the present paper, are a subset of the Weakly
Smooth family, for which Theorem 1 in [24] provided a regret bound that, in our notation,
writes

RK ≤ Õ
(
CH

ELEK
ν+3d/2
2ν+d

)
.

This bound is not only super-linear for 2d > ν but also exponential in H .

In all previous settings, theorem 18 ensures a regret bound for CINDERELLA of

RK ≤ Õ
(
HK

ν+2d
2ν+2d

)
,

which is both sub-linear in any regime and polynomial in H . In this way, we have proved for the first
time that the previous settings allow for learnable and feasible Reinforcement Learning.

E.7 Lower bounds

A lower bound for the any of the previous settings has clearly to depend on allK,H, ν, d. In particular,
the regret bound is known to decrease for higher ν, while it increases in the other variables. In terms
of dependence on H , our bound is already optimal: in this setting we cannot obtain less that the H
dependence [41]. On the other side, the optimal order in K is a major open problem in this field.

35

In fact, the only proved lower bound in the continuous setting involves smooth armed bandits, which
can be seen as a special case of the Strongly Smooth MDPs for H = 1. This bound [23], of order
K

ν+d
2ν+d is matched in the bandit case (same paper). As a comparison, our bound only achieves

K
ν+2d
2ν+2d , i.e. we pay a double dependence on d.

This poorer regret bound is not simply an artifact of the analysis, but rather a fundamental challenge
that arises when moving from bandit problems to reinforcement learning (RL). In RL, the agent
must estimate the value function at step h using its own estimates for the value function at the next
step, h+ 1. This forces to make a covering argument on the space of candidate state-value functions
(moving target problem, also a topic of the next section F), which has a detrimental effect on the
regret bound.

At this point, there are essentially two possibilities:

1. The covering argument cannot be avoided, and regret order of K
ν+2d
2ν+2d is the best we can

achieve for Kernelized MDPs, Strongly Smooth MDPs and Mildly Smooth MDPs. In that
case, it would be proved that continuous armed bandits are essentially easier than MDPs
with continuous state-action spaces.

2. As for tabular MDPs [4], a more refined analysis allows to avoid doing the covering
argument. In this way, a regret bound of order K

ν+d
2ν+d can be proved, as the problem

becomes as difficult as a smooth bandit. This would mean that, as for the comparisons multi
armed bandits/tabular MDP and linear bandit/linear MDP, there is no substantial difference
between continuous armed bandits and MDPs with continuous state-action spaces.

We leave this as an interesting open problem for the future advancements of the research in theoretical
RL.

F Some observations on [37]

[37] is one of the most recent papers in the literature on RL with continuous spaces. This work,
published at the celebrated Conference on Neural Information Processing Systems (2023) reported a
very strong result, proving a regret bound of order Õ(K

ν+d
2ν+d) for Kernelized RL with Matérn kernel.

If true, this bound would mean that it is possible to match the lower bound for the much easier case
of Kernelized bandits.

In this section, we will pose some objections to the analysis of that paper. To this aim, we are going
to refer to the updated version [38] of the same work, where the authors have corrected some minor
mistakes of the published paper.

The result giving the regret bound is Theorem 2 and, precisely, equation (21) in that paper. Without
digging into the algorithm that they use, we can say that, like our one, it is based on dividing Z
into sub-regions, there called Z ′ (even if the way these regions are created is totally different). As
the authors recognise in their section 4.1, the hardest point of the analysis is the so called "moving
target problem": to fit the current estimate Qt

h of the state-action value function, the authors use
rh + PhV

t
h+1, which is a random function (as V t

h+1 is estimated as well). Therefore, standard
confidence bounds do not apply straightforwardly. The way [38], as most papers, deal with this issue,
is to make a covering of the space Vh+1 of the state-value functions at the next step, and then make a
union bound over all the possible values for V t

h+1.

The tricky part of their analysis is that, instead of using the covering number of Vh+1, they fix one
region Z ′ and cover the space of functions restricted to Z ′, as it is said in the first eight lines of
section 4.2. In this way, as said in the same part of the paper, the ε−covering number of the function
class, for ε = O(

√
log(T)/

√
NT (Z ′)) (where NT (Z ′) corresponds to the number of times region

Z ′ is visited), results for be of order log(T).

Unfortunately, we find no justification for this choice. Line 7 of their algorithm, when the estimated
Qt

h(·) is computed, relies on equations (15-16), which do a Gaussian process regression with target
rh(z

′) + V t
h+1(s

′
h+1) for all z′ ∈ Z ′ visited in the process. The issue here is that, while we know

that z′ ∈ Z ′, we cannot say anything about s′h+1, which is sampled from ph+1(·|z′). The new state

36

is not guaranteed to belong to any specific sub-region of S . Therefore, it is not sufficient to do a cover
restricted to the value functions Z ′ → [0, 1].

In fact, all the approaches based on value iteration suffer from this problem. For tabular MDPs, the
problem of covering the space of next state value functions was well-known to prevent achieving
optimal regret, and was eventually solved by [4], who found a way to avoid doing the covering at all.
Note that tabular MDPs can be seen as an extreme case where Z is divided in regions Z ′ containing
just one state-action couple, and making a cover of Vh+1 (the space of candidate value functions at
the next step) restricted to a single state would trivially achieve optimal regret of order

√
|S||A|K.

Still, this move is known to be wrong.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: every claim made in the abstract corresponds to a result proved in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We propose some novel algorithms and theoretical MDP setting always
clarifying that these elements not include all the settings studied in the literature of theoretical
RL.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

37

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All proofs are reported in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: No experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, descriregiong the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with the
same dataset, or provide access to the model. In general. releasing code and data is
often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.

38

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: No experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: No experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: No experiments.

39

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: No experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [NA]

Justification: No experiments.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

40

https://neurips.cc/public/EthicsGuidelines

Justification: This work is just theoretical.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No experiments.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

41

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The work does not include crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

42

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

43

	Introduction
	Background and set-up
	Locally Linearizable MDPs
	Algorithm

	From local linearity to Mildly Smooth MDPs
	Comparison with related works
	Conclusion
	Table of Notation
	Locally Linearizable MDPs
	Definition of the quasi-optimal solution
	Algorithm
	Algorithm analysis
	Decomposition of the estimated solution
	Failure event
	Quasi-optimal solution and good event

	Regret bound
	Computational complexity
	Mildly Smooth MDPs
	Smoothness of real functions
	Between Weak and Strong
	Relation between the settings
	Regret bound for Mildly smooth MDPs
	Discussion on d
	Final considerations
	Lower bounds

	Some observations on vakili2024kernelized

