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Abstract

When the agent’s observations or interactions are
delayed, classic reinforcement learning tools usu-
ally fail. In this paper, we propose a simple yet
new and efficient solution to this problem. We
assume that, in the undelayed environment, an
efficient policy is known or can be easily learned,
but the task may suffer from delays in practice
and we thus want to take them into account. We
present a novel algorithm, Delayed Imitation with
Dataset Aggregation (DIDA), which builds upon
imitation learning methods to learn how to act in
a delayed environment from undelayed demon-
strations. We provide a theoretical analysis of the
approach that will guide the practical design of
DIDA. These results are also of general interest
in the delayed reinforcement learning literature
by providing bounds on the performance between
delayed and undelayed tasks, under smoothness
conditions. We show empirically that DIDA ob-
tains high performances with a remarkable sample
efficiency on a variety of tasks, including robotic
locomotion, classic control, and trading.

1. Introduction
In reinforcement learning (RL), it is generally assumed that
the effect of an action over the environment is known instan-
taneously to the agent. However, in the presence of delays,
this classic setting is challenged. The effect of a delayed
action execution or state observation, if not accounted for,
can have perilous effects in practice (Dulac-Arnold et al.,
2019). It can induce a performance loss in trading (Wilcox,
1993), create instability in dynamic systems (Dugard & Ver-
riest, 1998; Gu & Niculescu, 2003), be detrimental to the
training of real-world robots (Mahmood et al., 2018). To
further grasp the importance of delay, one may notice that
most traffic laws around the world base safety distances on
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drivers’ “reaction time”, which is partly due to the percep-
tion of the event and partly to the implementation of the
action (Droździel et al., 2020). These two types of delay
have an exact correspondence in RL, where they are dubbed
as state observation and action execution delays. There are
many ways in which delays can further vary. They may
be anonymous (i.e., not known to the agent), constant or
stochastic, integer or non-integer. In this work, as in most of
the literature, we focus on constant non-anonymous delays
in the action execution or, equivalently (Katsikopoulos &
Engelbrecht, 2003), in the state observation.

Previous research can be divided into three main directions.
In memoryless approaches the agent’s policy depends on
the last observed state (Schuitema et al., 2010). Augmented
approaches try to cast the problem into a Markov decision
process (MDP) by building policies based on an augmented
state, composed of the last observed state and on the actions
that the agent knows it has taken since then (Bouteiller
et al., 2020). A last line of research, which we refer to as
model-based approach, considers using as a policy input
any statistics about the current unknown state that can be
computed from the augmented state (Walsh et al., 2009;
Firoiu et al., 2018; Chen et al., 2021; Agarwal & Aggarwal,
2021; Derman et al., 2021; Liotet et al., 2021). The goal of
this approach is to avoid the curse of dimensionality posed
by the augmented state (Walsh et al., 2009; Bouteiller et al.,
2020). We formalize the problem of delays in Section 3
and give a more in-depth description of the literature in
Section 4.

We adopt the simple yet practically effective idea of learn-
ing a policy in a delayed environment by applying imitation
learning to a policy learned in the undelayed environment,
as described in Section 5. We propose to use DAGGER (Ross
et al., 2011) as the imitation learning algorithm. It is par-
ticularly well suited to the task since, being one of the few
algorithms to compute the loss under the learner’s own dis-
tribution (Osa et al., 2018), it is able to account for the shift
in distribution induced by the delay We provide a theoretical
analysis (Section 6) which, under smoothness conditions
over the MDP, bounds the performance lost by introduc-
ing delays. Finally, we provide an extensive experimental
analysis (Section 7) where our algorithm is compared with
state-of-the-art approaches on a variety of delayed problems
and demonstrates great performances and sample efficiency.
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2. Preliminaries
Reinforcement Learning A discrete-time discounted
Markov Decision Process (MDP) (Puterman, 2014) is a
6-tuple M “ pS,A, p, R, γ, µq where S and A are measur-
able sets of states and actions respectively, pps1|s, aq is the
probability to transition to a state s1 departing from state s
and taking action a, Rps, aq is a random variable defining
the reward collected during such a transition. We denote by
rps, aq its expected value. Finally, µ is the initial state distri-
bution. The agent’s goal is to find a policy π, which assigns
probabilities to the actions given a state, to maximize the
expected discounted return with discount factor γ P r0, 1q,
defined as1

Jpπq “ E
st`1„pp¨|st,atq

at„πp¨|stq

s0„µp¨q

«

H
ÿ

t“0

γtRpst, atq

ff

. (1)

We consider an infinite horizon setting, where H “ 8.
Note that 1

1´γ can be seen as the effective horizon in this
case. We restrict the set of policies to the stationary Marko-
vian policies, Π, as it contains the optimal one (Puterman,
2014). RL analysis frequently introduces the concept of
state-action value function, which quantifies the expected
return obtained under some policy, starting from a given
state and fixing the first action. Formally, this function is
defined as

Qπps, aq “ E
at„πp¨|stq

«

H
ÿ

t“0

γtRpst, atq

ˇ

ˇ

ˇ

ˇ

s0“s,
a0“a

ff

. (2)

Similarly we define the state value function as V πpsq “

Ea„πp¨|sqrQπps, aqs. Lastly, we consider the discounted
visited state distribution under some policy π, starting from
any initial distribution ρ, for some state s P S as

dπρ psq “ p1 ´ γq

8
ÿ

t“0

γt Ppst “ s|π, ρq.

Lipschitz MDPs We now introduce notions that will allow
us to characterize the smoothness of an MDP. Let L ą

0 and let pX, dXq and pY, dY q be two metric spaces. A
function f : X Ñ Y is said to be L-Lipschitz continuous
(L-LC) if, @x, x1 P X , dY pfpxq, fpx1qq ď L dXpx, x1q. We
denote the Lipschitz semi-norm of a function f as }f}L “

supx,x1PX,x‰x1
dY pfpxq,fpx1

qq

dXpx,x1q
. In real space X Ă Rn, we

use as distance the Euclidean one, i.e., dXpx, x1q “ ∥x ´

x1∥2. As for the probabilities, we use the L1-Wasserstein
distance, which for some probabilities µ, ν with sample
space Ω is (Villani, 2009):

W1pµ, νq “ sup
}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

Ω

fpωqpµ ´ νqpdωq

ˇ

ˇ

ˇ

ˇ

.

1In the sequel, we will tacit that st`1 „ pp¨|st, atq.

We now use those concepts to quantify the smoothness of
an MDP.

Definition 2.1 (Lipschitz MDP). An MDP is said to be
pLP , Lrq-LC if, for all ps, aq, ps1, a1q P S ˆ A

W1ppp¨|s, aq, pp¨|s1, a1qq ď LP

`

dSps, s1q ` dApa, a1q
˘

,
ˇ

ˇrps, aq ´ rps1, a1q
ˇ

ˇ ď Lr

`

dSps, s1q ` dApa, a1q
˘

.

Definition 2.2 (Lipschitz policy). A stationary Markovian
policy π is said to be Lπ-LC if, @s, s1 P S

W1pπp¨|sq, πp¨|s1qq ď Lπ dSps, s1q.

These concepts provide useful tools for theoretical analysis
and have been extensively used in the field of RL (Rachelson
& Lagoudakis, 2010). Under the assumption of pLP , Lrq-
LC MDP and Lπ-LC policy π, provided that γLP p1 `

Lπq ď 1, then Qπ is LQ-LC with LQ “ Lr

1´γLP p1`Lπq

(Rachelson & Lagoudakis, 2010, Theorem 1). This property
can be useful to prove the Lipschitzness of the Q function.

Additionally, in the case of delays, the smoothness of trajec-
tories (sequence of consecutive states and actions) is a key
factor. Intuitively, smoother trajectories make the current
unknown state more predictable. Therefore, we consider the
concept of time-Lipschitzness, introduced by Metelli et al.
(2020).

Definition 2.3 (Time-Lipschitz MDP). An MDP is said
to be LT -Time Lipschitz Continuous (LT -TLC) if, @s, a P

S ˆ A

W1ppp¨|s, aq, δsq ď LT ,

where δs is the Dirac distribution with mass on s.

3. Problem Definition
A delayed MDP (DMDP) stems from an MDP endowed
with a sequence of variables p∆tqtPN corresponding to the
delay at each step of the sequential process. The delay can
affect the state observation, which implies that the agent has
no access to the current state but only to a state visited ∆t

steps before. If it affects the action execution instead, the
delay implies that the agent must select an action that will
be executed in ∆t steps from now. Lastly, reward collection
delays may raise credit assignment issues and are outside
the scope of this paper. In the first two cases, the DMDP
violates the Markov assumption since the next observed
state-reward couple does not depend only on the currently
observable state and the chosen action. In the literature, the
delay is usually assumed to be a Markovian process, that
is ∆t „ P p¨|∆t´1, st´1, at´1q. Note that this definition
includes state dependent delays when ∆t „ P p¨|st´1q,
Markov chain delays when ∆t „ P p¨|∆t´1q and stochastic
delays when p∆tqtPN are i.i.d.



Delayed Reinforcement Learning by Imitation

In this work we consider constant delays, denoting the de-
lay with the symbol ∆. When the delay is constant, the
action execution delay and the state observation one are
equivalent (Katsikopoulos & Engelbrecht, 2003), thus, it is
sufficient to consider only the state observation delay. Fur-
thermore, following Katsikopoulos & Engelbrecht (2003),
we consider a reward collection delay equal to the state
observation delay so as not to collect a reward on a yet unob-
served state, which could result in some form of partial state
information. Finally, we assume that the delay is known to
the agent, placing ourselves in the non-anonymous delay
framework.

Within this reduced framework, it is possible to introduce
an important concept of DMDPs, the augmented state.
Given the last observed state s and the sequence of actions
pa1, . . . , a∆q which have been taken since then, but whose
outcome has not yet been observed, the agent can construct
an augmented state, i.e., a new state in X “ S ˆ A∆ which
casts the DMDP into an MDP (Bertsekas, 1987; Altman &
Nain, 1992). Said alternatively, the augmented state con-
tains all the information the agent needs to learn the optimal
policy in the DMDP. From the augmented state, we can
gather information on the current state. This information
can be summarized by the belief, the probability distribution
of the current unknown state s given the augmented state x
as bps|xq. More explicitly, given x “ ps1, a1, . . . a∆q, one
has

bps|xq “

ż

S∆´1

pps|s∆, a∆q

∆
ź

i“2

ppsi|si´1, ai´1qdsi.

The delayed reward collected for playing action a on x is
given by rrpx, aq “ Es„bp¨|xq rrps, aqs. To complete the
DMDP framework, we define rµ, the initial augmented state
distribution. It samples the state contained in the augmented
state under µ and samples the first action sequence under a
distribution whose choice depends on the environment. We
consider a uniform distribution on A.

4. Related Works
The first proposed solution to the problem of delays is to
use regular RL algorithms on the augmented-state MDP. Al-
though the optimal delayed policy could potentially be ob-
tained, this approach is affected by the exponential growth of
the augmented state space, which becomes |S||A|∆ (Walsh
et al., 2009) and can be harmful for the performance in prac-
tice. Nonetheless, recent work by Bouteiller et al. (2020)
revisits this approach and propose an ingenious way to re-
sample trajectories without interacting with the environ-
ment by populating the augmented state with actions from
a different policy, greatly improving the sample efficiency.
They propose an algorithm, Delay-Correcting Actor-Critic
(DCAC), which builds on SAC (Haarnoja et al., 2018) us-

ing the aforementioned resampling idea. DCAC has great
experimental results and is sample efficient by design.

A second line of research focuses on memoryless policies,
inspired by the partially observable MDP literature. It ig-
nores the action queue to act according to the last observed
state only. However, the delay can still be taken into account
as in dSARSA (Schuitema et al., 2010), a modified version
of SARSA (Sutton & Barto, 2018) which accounts for the
delay during its update. Indeed, SARSA would credit the
reward collected for applying action a on the augmented
state x, containing the last observed state s, to the pair ps, aq.
Instead, dSARSA proposes to credit ps, a1q, where a1 is the
oldest action stored in x, the action actually applied on s.
Despite being memoryless, dSARSA often achieves good
performances in practice.

Finally, the most common line of research, the model-based
approach, relies on computing statistics on the current state
which are then used to select an action. The name model-
based comes from the fact that those solutions usually learn
a model of the environment to predict the current state, by
simulating the effect of the actions stored in the augmented
state on the last observed state. Walsh et al. (2009) learn
the transition as a deterministic mapping so as to predict
the most probable state, before selecting actions based on it.
Derman et al. (2021) and Firoiu et al. (2018) propose a sim-
ilar approach by learning the transitions with feed-forward
and recurrent neural networks, respectively. Agarwal & Ag-
garwal (2021) estimate the transition probabilities and the
undelayed Q function to select the action that gives the max-
imum Q under the estimated distribution of the current state.
Chen et al. (2021) use a particle-based approach to produce
potential outcomes for the current state and, interestingly,
extend the predictions to collect better value estimates. Li-
otet et al. (2021) propose D-TRPO which learns a vectorial
encoding of the belief of the current state which is then used
as an input to the policy, the latter being trained with TRPO
(Schulman et al., 2015a). The authors also propose another
algorithm, L2-TRPO which, instead of the belief, learns the
expected current state.

While most of these works assume that the delay is fixed,
some consider the problem of stochastic delays (Bouteiller
et al., 2020; Derman et al., 2021; Agarwal & Aggarwal,
2021). Only one of them considers the case of non-integer
delays (Schuitema et al., 2010).

5. Imitation Learning for Delays
Our proposed approach is motivated by the limitations of
two lines of research from the literature. Augmented ap-
proaches are affected by the increased dimensionality of
the augmented state space that hinders the learning process,
while model-based approaches require carefully designed
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models of the state transitions and usually come with a com-
putational burden. Instead, we propose to learn a mapping
from augmented state directly to undelayed expert actions,
facilitating the learning process as opposed to augmented
approaches and removing explicit approximation of tran-
sitions as opposed to model-based approaches. It implies
however that training is split into two sub-problems: learn-
ing an expert undelayed policy and then imitating this policy
in a DMDP.

5.1. Imitation Learning

It is usually easier to learn a behavior from demonstrations
than learning from scratch using standard RL techniques.
Imitation learning aims at learning a policy by mimicking
the actions of an expert, bridging the gap between RL and
supervised learning. Obviously, it requires that one can
collect examples of an expert’s behavior to learn from. For
an expert policy πE , most imitation learning approaches aim
at finding a policy π that minimizes Es„d

πE
µ

rlps, πqs (Ross
et al., 2011) where lps, πq is a loss designed to make π closer
to πE . Note that this objective is defined under the state
distribution induced by πE . This can easily be problematic
as, whenever the learner makes an error, it could end up in a
state where its knowledge of the expert’s behavior is poor
and therefore errors could accumulate. Indeed, it has been
shown (Xu et al., 2020, Theorem 1) that the error made by
the learner potentially propagates as the squared effective
horizon. This is consistent with other bounds found in
the literature depending on H2 in the finite horizon setting
(Ross & Bagnell, 2010, Theorem 2.1).

One successful solution to this problem is dataset aggre-
gation as proposed by Ross et al. (2011) in their DAGGER
algorithm. The idea is to sample new data under the learned
policy and query the expert on those new samples in order to
match the learner’s state distribution. DAGGER recursively
builds a dataset D by sampling trajectories under policy
πi “ βiπE ` p1 ´ βiqπ̂i obtained from a βi-weighted mix-
ture of the expert policy and the previously imitated policy
π̂i. One then queries the expert’s policy on the states encoun-
tered in these trajectories and adds those tuples ps, πEpsqq

to D. Finally, a new imitated policy π̂i`1 is trained on D.
The sequence pβiqiPrr1,Nss is such that β1 “ 1, so as to sam-
ple initially only from πE and βN “ 0 to sample only from
the imitated policy in the end.

5.2. Duality of Trajectories

Once sampled either from a DMDP or its underlying MDP,
the trajectories can be interpreted in either one of the pro-
cesses when the delay is an integer number of steps. In
a DMDP, the current state will eventually be observed by
a delayed agent. In an MDP, the trajectories can be re-
organized to simulate the effect of a delay. In particular, this

Algorithm 1 Delayed Imitation with DAGGER (DIDA)
Inputs (un)delayed environment E , undelayed expert πE , β
routine, number of steps N , empty dataset D.
Outputs: delayed policy πI

1: for βi in β-routine do
2: for j in t1, . . . , Nu do
3: if New episode then
4: Initialize state buffer ps1, s2, . . . , s∆`1q

and action buffer pa1, a2 . . . , a∆q

5: end if
6: Sample aE „ πEp¨|s∆`1q, set a “ aE
7: if Random u „ Upr0, 1sq ě βi then
8: Overwrite a „ πIp¨|rs1, a1, . . . , a∆sq

9: end if
10: Aggregate dataset:

D Ð D Y prs1, a1, . . . , a∆´1s, aEq

11: Apply a in E and get new state s
12: Update buffers:

ps1, . . . , s∆`1q Ð ps2, . . . , s∆`1, sq

pa1, . . . , a∆q Ð pa2, . . . , a∆, aq

13: end for
14: Train πI on D
15: end for

means that one can collect trajectories with an undelayed
environment and sample either from an undelayed policy or
a delayed policy (by creating a synthetic augmented state).
This is exactly what is required to adapt DAGGER to imitate
an undelayed expert with a delayed learner.

5.3. Imitating an Undelayed Policy

We follow the learning scheme of DAGGER with the slight
difference that, if the expert is queried, then the current
state is fed to πE while if the imitator policy is queried, an
augmented state is built from the past samples, considering
the state ∆-steps before the current state and the sequence
of actions taken since then. This implies that a buffer of
the latest states and actions has to be built. We present our
approach, which we call Delayed Imitation with DAGGER
(DIDA), in Algorithm 1. In practice there is no need to store
each augmented state in the dataset D but only trajectories of
state-action pairs from the underlying MDP from which the
augmented states can be rebuilt during training. Otherwise,
each action would be repeated ∆ times in D , since an action
is contained in ∆ consecutive augmented states.

When sampling from the undelayed environment is pro-
hibited, we apply a slight modification to DIDA as fol-
lows. Whenever the undelayed policy should be queried,
one could instead sample from it in a memoryless fashion.
That means taking the state contained in the augmented state
as input to πE , thus substituting Line 6 of Algorithm 1 for
aE „ πEp¨|s1q. The action stored in the buffer must remain
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the undelayed expert one’s on the current unobserved state
however. This implies that the agent must wait ∆ steps
until the current state is observed before updating the buffer
for the current augmented state. Thus delaying the exe-
cution of Line 10 of Algorithm 1. We call this variation
memoryless-DIDA (M-DIDA).

What will be the policy learned by DIDA in practice? Given
an augmented state x, DIDA learns to replicate the action
taken by the expert on the current state s, unknown to the
agent. However, the same augmented state can lead to
different current states, which is summarized in the belief
bps|xq. Therefore, DIDA learns the following policy

rπbpa|xq “

ż

S
bps|xqπEpa|sqds. (3)

This policy is similar to the policies from model-based ap-
proaches, and, for this reason, may yield sub-optimal poli-
cies in some MDPs (Liotet et al., 2021, Proposition VI.1.).
In practice, the class of functions of the imitated policy πI

and the loss chosen for training in step 15 of Algorithm 1
may slightly modify the policy learned by DIDA. For in-
stance, a deterministic πI would naturally forbid to learn
the distribution given in Equation (3). This is discussed in
Appendix E.1.

5.4. Extension to Non-Integer Delays

We now suppose that the delay is non-integer, yet still con-
stant. For simplicity, we assume ∆ P p0, 1q but the general
case follows from similar considerations. We consider a ∆-
delay in the action execution (the case of state observation
is similar).

DMDP with non-integer delays can be viewed as the result
of two interleaved MDPs, M with time indexes t, t` 1, . . .
and M∆ with indexes t ` ∆, t ` ∆ ` 1, . . . . Those two
discrete MDPs stem from a single continuous process, of
which we observe only some fixed time steps, similarly to
(Sutton et al., 1999). They share the same transition and
reward functions. A delayed agent would see states from
M while executing actions on states of M∆. In practice,
the agent taking action at seeing state st would collect a
reward rpst`∆, atq. The transition probabilities are also
affected. We define b∆pst`∆|st, aq the probability of reach-
ing st`∆ from st when action a is applied during time ∆
and b1´∆pst|st´1`∆, aq the probability of reaching st from
st´1`∆ when action a is applied during time 1 ´ ∆. To
make the definition consistent with the regular MDP, those
probabilities must satisfy that, for all ps, a, s1q P S ˆAˆS

pps1|s, aq “

ż

S
b1´∆ps1|z, aqb∆pz|s, aq dz. (4)

Clearly, even for ∆ P p0, 1q, an augmented state xt “

pst, at´1q P S ˆ A “: X is needed in order not to lose

information about the state st`∆ „ b∆p¨|st, at´1q. The
DMDP with augmented state can again be cast into an
MDP as in Bertsekas (1987); Altman & Nain (1992), where
the new transition is defined for xt “ pst, at´1q, xt`1 “

pst`1, atq P X , as,

p̃pxt`1|xt,aq:“δapatq

ż

S
b1´∆pst`1|z,aqb∆pz|st,at´1q dz,

where the term δapatq ensures that the new extended state
contains the action that has been applied on xt. For delays
greater than 1, one needs to consider the augmented state
in the space S ˆ Ar∆s and the previous considerations hold
by first considering the integer part of the delay and then
its remaining non-integer part. In this setting, we propose
to use DIDA by learning an undelayed policy in M∆ and
imitating it by building an augmented state from the states
in M. For clarity we provide the extension to this setting in
Appendix D.

To extend the theoretical analysis to the non-integer setting,
we need to extend the concept of LT -TLC. For ∆ P p0, 1q,
@s, a P S ˆ A, a DMDP is LT -TLC if

W1pb∆p¨|s, aq, δsq ď ∆LT .

6. Theoretical Analysis of the Approach
We will now provide a theoretical analysis of the approach
proposed above. The role of this analysis is twofold. First,
it gives insights into which expert undelayed policy is best
suited to be imitated in a DMDP. Secondly, it provides gen-
eral results on the value functions bounds between DMDPs
and MDPs, when the latter has guarantees of smoothness,
setting aside pathological counterexamples such as in (Li-
otet et al., 2021, Proposition VI.1.) while remaining realistic.
Comparing the performances of delayed and undelayed poli-
cies via their state value functions is not trivial since they
live on two different spaces (S and X “ S ˆ A∆).

Different approaches were proposed to address this issue.
In (Walsh et al., 2009, Theorem 3) the idea stems from the
fact that a delayed policy in a deterministic MDP has same
optimal performance as the undelayed one. Therefore, when
a finite MDP is not deterministic but mildly stochastic, that
is there exists ϵ such that @ps, aq P S ˆ A, Ds1, pps1|s, aq ě

1 ´ ϵ, then, one can use a deterministic approximation to
the MDP and use it to learn a delayed policy. The distance
between the value function of this delayed policy, rV π and
the one of the real MDP, V π as ∥rV π ´ V π∥8 ď

γϵRmax

p1´γq2
,

where Rmax is the maximum absolute reward. The assump-
tions by Walsh et al. (2009) are quite strong and the bound
grows quadratically with the effective time horizon. An-
other approach is proposed by Agarwal & Aggarwal (2021,
Theorem 1), who compare the delayed value function V rπ to
Es„bp¨|xqrV πpsqs, which corresponds to the expected value
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function of the undelayed policy averaged on the current
unknown state given some augmented state. However, the
authors make no assumptions about smoothness.

Instead, we base our analysis on smoothness assumptions
to provide our main result on the difference in performance
between delayed and undelayed policies in Theorem 6.1.
To obtain this result, we must first derive a delayed version
of the performance difference lemma (Kakade & Langford,
2002). Its proof, as for all other results in this section, is
given in Appendix B and applies to any couple of delayed
and undelayed policies. Note that these results hold for
either integer or non-integer constant delays. For simplicity,
we state the results with belief b but b∆ is intended if the
delay is non-integer.

Lemma 6.1. [Delayed Performance Difference Lemma]
Consider an undelayed policy πE and a ∆-delayed policy
rπ, with ∆ P Rě0. Then, for any x P X ,

E
s„bp¨|xq

rV πE psqs ´ V rπpxq “
1

1 ´ γ

E
x1„drπ

x

»

—

–

E
s„bp¨|x1q

rV πE psqs ´ E
s„bp¨|x1

q

a„rπp¨|x1
q

rQπE ps, aqs

fi

ffi

fl

.

We can then leverage the previous result to obtain a valuable
result for DMDPs, which holds for delayed policies of the
form of Equation (3).

Theorem 6.1. Consider an pLP , Lrq-LC MDP and a Lπ-
LC undelayed policy πE , such that QπE is LQ -L.C.2. Let
rπb be the ∆-delayed policy defined as in Equation (3), with
∆ P Rě0. Then, for any x P X ,

E
s„bp¨|xq

rV πE psqs ´ V rπbpxq ď
LQLπ

1 ´ γ
σx
b ,

where σx
b “ E

x1
„d

rπb
x

s,s1
„bp¨|x1

q

rdSps, s1qs.

Proof sketch. The first step of the proof involves applying
the delayed performance difference lemma to the l.h.s..
This brings an upper bound depending on QπE ps, a1q ´

QπE ps, a2q where a1 „ πEp¨|sq and a2 „ rπbp¨|x1q. It
quantifies the effect of selecting an action under rπb and then
following πE instead of following πE directly. Using the
Lipschitzness of QπE , this term can be bounded by a quan-
tity in W1pπEp¨|sq}rπbp¨|x1q. From the definition of rπbp¨|x1q

which corresponds to applying πE on the state sampled from
the belief bp¨|x1q, an upper bound of the previous Wasser-
stein distance can be obtained, involving the integration
of bps1|x1qW1pπEp¨|sq}πEp¨|s1qq for s1. This is precisely

2In fact, only Lipschizness in the second argument is necessary
(see proof).

where the loss in performance of DIDA with respect to the
expert might come from. Instead of knowing the current
state s, it is constrained to select an action which performs
well on the possible current states weighted by their belief
given the augmented state. Using the Lipschitzness of πE

completes the proof.

However, this result seems difficult to grasp because of its
dependence on the term σx

b . We suggest two ways to further
bound this term. The first involves the time-Lipschitzness
assumption of the MDP and yields Corollary 6.1.

Corollary 6.1. Under the assumptions of Theorem 6.1,
adding that the MDP is LT -TLC, then, for any x P X ,

E
s„bp¨|xq

rV πE psqs ´ V rπbpxq ď
2∆LTLQLπ

1 ´ γ
.

This first result clearly highlights the linear dependence
on the delay ∆. However, the bound does not vanish (as
expected) when the MDP is deterministic. This property
is verified by a second result. This second result assumes
a state space in Rn equipped with the Euclidean norm and
yields Corollary 6.2.

Corollary 6.2. Under the assumptions of Theorem 6.1
adding that S Ă Rn is equipped with the Euclidean norm.
Then, for any x P X ,

E
s„bp¨|xq

rV πE psqs ´ V rπbpxq ď
2LQLπ

1 ´ γ

E
x1„d

rπb
x p¨q

«

c

Var
s„bp¨|x1q

ps|x1q

ff

.

Interestingly, we show that this second corollary matches
a theoretical lower bound when the expert policy is opti-
mal. We provide this lower bound in Theorem 6.2, which
shows that a too irregular expert policy (with high Lipschitz
constant) provides weaker guarantees.

Theorem 6.2. For every Lπ ą 0, LQ ą 0, there exists an
MDP such that the optimal policy is Lπ-LC, its state action
value function is LQ-LC in the second argument, but for
any ∆-delayed policy rπ, with ∆ P Rě0, and any x P X

E
s„bp¨|xq

rV ˚psqs ´ V rπpxq ě

?
2

?
π

LQLπ

1 ´ γ

E
x1„dπ̃

xp¨q

«

c

Var
s„bp¨|x1q

ps|x1q

ff

,

where V ˚ is the value function of the optimal undelayed
policy.

Proof sketch. We build an MDP where such a bounds holds.
We consider a state and action space in R. Performing action
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a, we transition from s to s ` a ` ϵ where ϵ „ N p0, σ2q.
The reward function is proportional to ´|s ` a|, so that
the objective is to always move towards the origin In the
undelayed case, knowing the current position, it is possible
to achieve the optimal 0 return. Instead, when there is
an observation delay, we know the state up to an error of
distribution N p0,∆σ2q, which makes it impossible to have
an expected reward smaller than Er|N p0,∆σ2q|s.

We provide an alternative way to derive bounds in perfor-
mance in Appendix C, which provide slightly different re-
sults as discussed in Appendix C.1.

We have bounded the performance of our perfectly imitated
delayed policy rπb with respect to the undelayed expert πE .
However, two additional sources of performance loss have
to be taken into account. First, the expert πE may be sub-
optimal in the undelayed MDP. Second, the imitated policy
πI may not learn exactly rπb.

These theoretical results highlight two important trade-offs
in practice. If the expert policy is smoother than the optimal
undelayed policy, then we might miss out on some oppor-
tunities, but the delayed policy is likely to be more similar
to the expert one, according to Theorem 6.1. The second
trade-off concerns noisier policies. For them, the imitation
step is likely to be easier, as it provides examples of how to
recover from bad decisions (Laskey et al., 2017). Therefore,
our imitated policy πI is likely to be more similar to rπb.
However, this may decrease the performance of the expert
compared to the optimal undelayed policy.

7. Experiments
7.1. Setting

As we have seen in the theoretical analysis, a smoother ex-
pert is beneficial for the performance bound of the imitated
delayed policy. Therefore, in the following experiments,
we consider expert policies learned with SAC. As reported
in an extensive study about smooth policies (Mysore et al.,
2021), the entropy-maximization framework of SAC is able
to learn a smooth policy even without additional forms of
regularization. To avoid ever-growing memory by storing
all samples in the buffer as done in Algorithm 1, we use a
maximum buffer size of 10 iterations for DIDA and over-
write the oldest iteration samples when this buffer is full. As
suggested by Ross et al. (2011), we use β1 “ 1, βiě2 “ 0
as mixture weights for the sampling policy. The policy for
DIDA is a simple feed-forward neural network. More details
and all hyper-parameters are reported in Appendix E.2.

We will test DIDA and M-DIDA, along with some baselines
from the state of the art, on the following environments.

Pendulum The task of the agent is to rotate a pendulum up-

ward. It is a classic experiment in delayed RL as delays are
highly impacting performance due to unstable equilibrium
in the upward position. We use the version from the library
gym (Brockman et al., 2016).

Mujoco Continuous robotic locomotion control tasks re-
alized with an advanced physics simulator from the library
mujoco (Todorov et al., 2012). Here the main difficulty
lies in the complex dynamics and in the large state and ac-
tion spaces. Among the possible environments, we consider
the ones that are most affected by delays, namely Walker2d,
HalfCheetah, Reacher, and Swimmer.

Trading The agent trades the EUR-USD (C/$) currency
pair every 10 minutes and can either buy, sell or stay flat
against a fixed amount of USD, following the framework of
Bisi et al. (2020) and Riva et al. (2021). We assume trading
is without fees, but we do take the spread into account. To
this setting, we add a delay of 50 seconds to the action
execution, thus placing the experiment in the non-integer
delay framework. In this environment, we leverage the
knowledge of an expert which is a policy trained on years
2016-2017 by Fitted Q-Iteration (FQI Ernst et al., 2005) with
XGBoost (Chen & Guestrin, 2016) as a regressor for the
Q function. Only for this task, we use Extra Trees (Geurts
et al., 2006) as policy for DIDA. Due to the highly stochastic
nature of the environment, we consider 4 experts trained
with the same configuration but a different seed. For each
of these expert, 5 seeds have been used for DIDA, resulting
in 20 runs of DIDA on which mean and standard deviation
of the results are computed. Finally, the expert has been
selected by performing validation of its hyper-parameters on
2018, it is therefore possible to do validation on the delayed
dataset of 2018 in order to select an expert which, albeit
trained on undelayed data, performs well on delayed data.
We refer to this expert as delayed expert. We compare the
performance of the expert, undelayed expert and DIDA on
year 2019.

The baselines for comparison with our algorithm include a
memoryless and an augmented version of TRPO (M-TRPO
and A-TRPO respectively), D-TRPO and L2-TRPO (Li-
otet et al., 2021), SARSA (Sutton & Barto, 2018) and
dSARSA (Schuitema et al., 2010). The last two algorithms
involve state discretization and are thus tested on pendulum
only. We consider also augmented SAC (A-SAC), consid-
ered also by Bouteiller et al. (2020), and memoryless SAC
(M-SAC). Although SAC can be trained at every step as
we do for Pendulum, we restrict training to every 50 steps
on Mujoco to speed up the procedure and reduce memory
usage. We have also considered adding DCAC (Bouteiller
et al., 2020) but for computational reasons, we have decided
not to include it. Early experimental results showed that
its running time was more than 50 times the one of DIDA.
For a fair comparison to the baselines, which learn a policy
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(a) Pendulum.
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(c) Reacher.

Figure 1: For a 5-steps delay, mean return and one standard deviation (shaded) as a function of the number of steps sampled
from the environment (10 seeds).
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(a) Swimmer.
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(b) Walker2d.

Figure 2: For a 5-steps delay, mean return and one standard deviation (shaded) as
a function of the number of steps sampled from the environment (10 seeds).
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Figure 3: Mean return and its standard
deviation (shaded) as a function delay
(10 seeds).

from scratch, we include the training steps of the expert in
the step count of DIDA, as indicated by the vertical dotted
line in the figures.

7.2. Results

As we can see from the results on pendulum and mujoco,
Figures 1a to 1c, 2a and 2b, DIDA is able to converge much
faster than the baselines in any environment, with the ex-
ception of A-SAC on the pendulum environment. In less
than half a million steps on mujoco, and 250.000 steps on
pendulum, DIDA almost reaches its final performance. In
HalfCheetah and Reacher, we note that, although the best
delayed algorithm, DIDA performs much worse than the
expert. Surprisingly, in Swimmer, DIDA performs slightly
better than the undelayed expert. All these phenomenons
might actually come from a single cause. In our implemen-
tation of a delayed environment, we start from an undelayed
environment to which is added a wrapper simulating the
effect of the delay. The initialization of this process in-
volves sampling a sequence of ∆ random actions that are

applied in the undelayed environment in order to sample
the first augmented state. Depending on the environment,
this random sequence of actions could cause the agent to
start in disadvantageous or advantageous states. For in-
stance3, in HalfCheetah, the random action have put the
agent head-down when the the latter is first allowed to con-
trol the environment. It must thus first get back on its feet
before starting to move. On the contrary, in a simpler en-
vironment like Swimmer, the initial random action queue
might give some initial speed to the agent, yielding higher
rewards at the beginning than its undelayed counterpart.

We provide another experiment on Pendulum where we
study the robustness of DIDA, as compared to baselines,
against an increase in the delay for fixed hyper-parameters.
We report the final mean return per episode for different
values of the delay in Figure 3. Clearly, from all the base-
lines studied, DIDA is the most robust to the increase in the
delay.

3We provide a visual interpretation of these phenomenons here.

https://didadelayrl.wordpress.com/
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Figure 4: Comparison of the actions selected by the expert and the 10th iteration of DIDA on the Trading environment,
during train (2016-2017) and test (2019). Results show the action (colour) selected for each day (row) at each time of the
day (column).

Figure 5: Evolution of the return of DIDA for the trading
of the EUR-USD pair in 2019. Performance is computed in
percentage w.r.t. the invested amount.

For the Trading, being a batch-RL task since the training
dataset of 2016-2017 is a fixed set of historical exchange
rates, it is necessary to select the hyperparameters of DIDA
by validation on 2018 to avoid overfitting. The second itera-
tion of DIDA has been selected by validation. The results
on the test set of 2019 are shown in Figure 5. The results
show the ability of DIDA to adapt to non-integer delays
and maintain a positive return, which is not a simple when
taking the spread into account in trading the EUR-USD. It
clearly outperforms the delayed expert on this task. Surpris-
ingly, the delayed policy is able to outperform the expert on
the first period of the test. This could be explained by the
fact that the expert undelayed policy may have overfitted
the training set while the imitation learning of an undelayed
policy acted as a regularization. We provide an analysis on

the policy learned by DIDA with respect to the expert in
Figure 4. It illustrates the specific overfitting problem of the
Trading task caused by the batch-RL scenario by showing
the policy of DIDA at the 10th and last iteration compared
to the expert policy. Interestingly, the allocations of all the
presented policies follow peculiar daily patterns. Figure 4a-
b, where allocations on the training set are presented, shows
that DIDA’s policy replicates quite faithfully expert policy
temporal patterns. On the other hand in Figure 4c, where
test set is shown, it can be noticed that DIDA’s allocations
start to shift away from the expert pattern.

Finally, we provide in Appendix E.3 additional experiments
on different stochastic versions of pendulum.

8. Conclusion
In this paper, we explored the possibility of splitting de-
layed reinforcement learning into easier tasks, traditional
undelayed reinforcement learning on the one hand, and
imitation learning on the other one. We provided a theoret-
ical analysis demonstrating bounds on the performance of
a delayed policy compared to undelayed experts, both for
integer or non-integer constant delays. These bounds apply
in our particular setting but are also of interest in general for
delayed policies. This guided us in the creation of our al-
gorithm, DIDA, which learns a delayed policy by imitating
an undelayed expert using DAGGER. We have empirically
shown that this idea, although rather simple, provides ex-
cellent results in practice, achieving high performance with
remarkable sample efficiency and light computations. We
believe that our work paves the way for many possible gen-
eralizations, which include stochastic delays and particular
situations in which an undelayed simulator is not available,
but where an undelayed dataset can be artificially created
from delayed trajectories in order to train an expert offline.
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A. General Results
A.1. Bounds involving the Wasserstein distance

Proposition A.1. Let X,Y be two random variables on R with distribution π0, π1 respectively. Then,

|ErXs ´ ErY s| ď W1pπ0}π1q.

Proof. One has

ErXs ´ ErY s “

ż

R
xpπ0pxq ´ π1pxqqdx ď W1pπ0}π1q,

since x ÞÑ x is 1-LC. The same holds for ErY s ´ ErXs, since the Wasserstein distance is symmetric.

The next result asserts that if one applies a L-LC function to two random variables, one gets two random variables with
distribution whose Wasserstein distance is bounded by the original Wasserstein distance multiplied by a factor L.
Proposition A.2. Let g : Ω Ñ R be an L-LC function and π0, π1 two probability measures over the metric space Ω. Note
gπ the distribution of the random variable gpXq where X is distributed according to π. Then,

W1pgπ0}gπ1q ď LW1pπ0}π1q.

Proof. By definition of Wasserstein distance,

W1pgπ0}gπ1q “ sup
}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

R
fpxqpgπ0pxq ´ gπ1pxqqdx

ˇ

ˇ

ˇ

ˇ

“ sup
}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

R
fpxqgπ0

pxqdx ´

ż

R
fpxqgπ1

pxqdx

ˇ

ˇ

ˇ

ˇ

.

We can then use the definitions of gπ0
and gπ1

to rewrite the previous formula in terms of expected values

W1pgπ0
}gπ1

q “ sup
}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

R
fpgpxqqπ0pxqdx ´

ż

R
fpgpxqqπ1pxqdx

ˇ

ˇ

ˇ

ˇ

“ sup
}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

R
fpgpxqqpπ0pxq ´ π1pxqqdx

ˇ

ˇ

ˇ

ˇ

.

Since g is Lg-LC by assumption, the composition fpgpxqq is still Lg-LC, so

W1pgπ0
}gπ1

q ď LgW1pπ0}π1q.

Proposition A.3. Consider an MDP with π a policy such that its state-action value function is Lipschitz with constant LQ

in the second argument, i.e. it satisfies, for all s P S and a, a1 P A
ˇ

ˇQπps, aq ´ Qπps, a1q
ˇ

ˇ ď LQ dApa, a1q,

then, for every couple of probability distributions η, ν over A, one has that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
X„η
Y „ν

rQπps,Xq ´ Qπps, Y qs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď LQW1pηp¨q}νp¨qq.

Proof. We note gη and gν the respective distributions of Qπps,Xq and Qπps, Y q. First of all, we can apply Proposition A.1
to say that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
X„η
Y „ν

rQπps,Xq ´ Qπps, Y qs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď W1pgη}gνq.
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For a fixed s P S, the two random variables Qπps,Xq and Qπps, Y q can be seen as the application of the LQ-Lipschitz
function Qπps, ¨q : A Ñ R to X and Y , respectively. This satisfies the assumptions of Proposition A.2, therefore

W1pQπps, ηp¨qq}Qπps, νp¨qqq ď LQW1pηp¨q}νp¨qq.

Proposition A.4. Consider an LP transition function p and an Lπ policy π in some MDP M. Then, for any f : S Ñ R
which is 1-LC, we have that the function g : S Ñ R given by

gpsq :“

ż

S
fps1q

ż

A

pps1|s, aqπpa|sq da ds1

is Lipschitz with constant Lpp1 ` Lπq

Proof. Let s, z P S, one has

|gpsq ´ gpzq| “

ˇ

ˇ

ˇ

ˇ

ż

S
fps1q

ż

A

pps1|s, aqπpa|sq ´ pps1|z, aqπpa|zq da ds1

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż

S
fps1q

ż

A

pps1|s, aq pπpa|sq ´ πpa|zqq da ds1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

S
fps1q

ż

A

`

pps1|s, aq ´ pps1|z, aq
˘

πpa|zq da ds1

ˇ

ˇ

ˇ

ˇ

(5)

ď

ˇ

ˇ

ˇ

ˇ

ż

A

pπpa|sq ´ πpa|zqq

ż

S
fps1qpps1|s, aq ds1 da

ˇ

ˇ

ˇ

ˇ

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

A

`

ˇ

ˇ

ˇ

ˇ

ż

A

πpa|zq

ż

S
fps1q

`

pps1|s, aq ´ pps1|z, aq
˘

ds1 da

ˇ

ˇ

ˇ

ˇ

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

B

, (6)

where we add and remove the quantity pps1|s, aqπpa|zq in Equation (5) and use Fubini’s theorem in Equation (6).

By Lipschitzness of p, we have that a ÞÑ
ş

S fps1qpps1|s, aq ds1 is Lp-LC. Thus,

A “ LP

ˇ

ˇ

ˇ

ˇ

ż

A

pπpa|sq ´ πpa|zqq

ş

S fps1qpps1|s, aq ds1

LP
da

ˇ

ˇ

ˇ

ˇ

ď LπLP dSps, zq

For the second term, again, by Lipschitzness of p, we have

B ď

ˇ

ˇ

ˇ

ˇ

ż

A

LP dSps, zqπpa|zq da

ˇ

ˇ

ˇ

ˇ

“ LP dSps, zq.

Overall,

|gpsq ´ gpzq| ď LppLπ ` 1q dSps, zq.

A.2. Bounding σρ
b

We provide two bounds for σρ
b “ E x1

„drπ
ρ

s,s1
„bp¨|x1

q

rdSps, s1qs with ρ a distribution on S. The first uses the assumption that the

state space in is Rn and is equipped with the Euclidean norm while the second assumes that the MDP is TLC.
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Lemma A.1 (Euclidean bound). Consider an MDP such that S Ă Rn is equipped with the Euclidean norm. Then one has

σρ
b ď E

x1„dπ̃
ρ p¨q

«

c

Var
s„bp¨|x1q

ps|x1q

ff

.

Proof. We derive the following results which intermediate steps are detailed after.

σρ
b “ E

x1
„drπ

ρ

s,s1
„bp¨|x1

q

“

dSps, s1q
‰

“ E
x1

„drπ
ρ

s,s1
„bp¨|x1

q

”

a

ps1 ´ sq2
ı

(7)

“ E
x1„drπ

ρ

c

E
s,s1„bp¨|x1q

rps1 ´ sq2s. (8)

Equation (7) follows from the definition of the Euclidean norm and Equation (8) is obtained by applying Jensen’s inequality.
To conclude, since s1 and s are i.i.d., one has that Es,s1„bp¨|x1q

“

ps1 ´ sq2
‰

“ 2Vars„bp¨|x1qrss.

The following proposition is involved in the proof of the bound of σρ
b when the MDP is TLC.

Proposition A.5. Consider an LT -TLC MDP. Consider any augmented state x “ ps1, a1, . . . , a∆q P S ˆ A∆ for a given
∆ P Rě0. Then

W1 pbp¨|xq}δs1q ď ∆LT

Proof. First, consider ∆ P N We proceed by induction. The case case ∆ “ 0 is true since the current state is known exactly
without delay. The case ∆ “ 1 is true by the assumption of LT -TLC. Assume that the statement is true for ∆ P N, then

W1 pbp¨|xq}δs1q “ sup
}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

S
fps1q

`

bps1|xq ´ δs1ps1q
˘

ds1

ˇ

ˇ

ˇ

ˇ

“ sup
}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

S
pps2|s1, a1q

ż

S
fps1q

`

bps1|s2, a2, ¨ ¨ ¨ , a∆q ´ δs1ps1q
˘

ds1

ˇ

ˇ

ˇ

ˇ

(9)

“ sup
}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

S
pps2|s1, a1q

ż

S
fps1q

`

bps1|s2, a2, ¨ ¨ ¨ , a∆q ´ δs2ps1q
˘

ds1

`

ż

S
pps2|s1, a1q

ż

S
fps1q

`

δs2psq ´ δs1ps1q
˘

ds1

ˇ

ˇ

ˇ

ˇ

(10)

ď sup
}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

S
pps2|s1, a1q

ż

S
fps1q

`

bps1|s2, a2, ¨ ¨ ¨ , a∆q ´ δs2ps1q
˘

ds1

ˇ

ˇ

ˇ

ˇ

looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

A

` W1 pP p|s1, a1q}δs1q
looooooooooomooooooooooon

B

,

where (9) hols by conditioning on the second visited state s2 and Equation (10) holds by adding and subtracting δs2 . The
reader may have recognized that the statement at ∆ ´ 1 can be used to bound A while B can be bounded with the LT -TLC
assumption. Therefore

W1 pbp¨|xq}δs1q ď ∆LT ,

and the statement holds for any ∆ P N.

The proof for a general delay ∆ P Rě0 start by consider the fractional part of the delay in a similar way as described above.
The bound will be the sum of a term like A where the statement for integer delays can be applied and a term t∆uLT where
t∆u is fractional part of ∆.
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Lemma A.2 (Time-Lipschitz bound). Consider an LT -Lipschitz MDP with delay ∆. Then, one has

σρ
b ď 2∆LT

Proof. Call sx the state contained in x. By triangular inequality, one has

σρ
b “ E

x„drπ
ρ

s,s1
„bp¨|xq

“

dSps, s1q
‰

ď E
x„drπ

ρ

s„bp¨|x1
q

rdSps, sxqs ` E
x„drπ

ρ

s1
„bp¨|xq

“

dSpsx, s
1q

‰

“ 2 E
x„drπ

ρ

„
ż

S
dSps, sxqbps|xq ds

ȷ

“ 2 E
x„drπ

ρ

„
ż

S
dSps, sxq pbps|xq ´ δsxpsqq ds

ȷ

(11)

ď 2 E
x„drπ

ρ

rW1 pbp¨|xq}δsxqs , (12)

where Equation (11) holds because
ş

S dSps, sxqδsxpsqds “ 0 and Equation (12) follows by recognizing the Wasserstein
distance. One can then use Proposition A.5 on each of the two terms to conclude.

B. Bounding the Value Function via Performance Difference Lemma
Lemma 6.1. [Delayed Performance Difference Lemma] Consider an undelayed policy πE and a ∆-delayed policy rπ, with
∆ P Rě0. Then, for any x P X ,

E
s„bp¨|xq

rV πE psqs ´ V rπpxq “
1

1 ´ γ

E
x1„drπ

x

»

—

–

E
s„bp¨|x1q

rV πE psqs ´ E
s„bp¨|x1

q

a„rπp¨|x1
q

rQπE ps, aqs

fi

ffi

fl

.

Proof. We first prove the result for integer delay ∆ P N. We start by adding and subtracting
Es„bp¨|x1

q

a„rπp¨|x1
q

“

rps, aq ` γ Es1„pp¨|s,aqrV πE ps1qs
‰

to the quantity of interest Ipxq “ Es„bp¨|xqrV πE psqs ´ V rπpxq.

This yields:

Ipxq “ E
s„bp¨|xq

rV πE psqs ´ E
s„bp¨|x1

q

a„rπp¨|x1
q

„

rps, aq ` γ E
s1„pp¨|s,aq

rV πE ps1qs

ȷ

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

A

` E
s„bp¨|x1

q

a„rπp¨|x1
q

„

rps, aq ` γ E
s1„pp¨|s,aq

rV πE ps1qs

ȷ

´ V rπpxq

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

B

.

The first term is

A “ E
s„bp¨|xq

rV πE psqs ´ E
s„bp¨|x1

q

a„rπp¨|x1
q

rQπE ps, aqs .
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For the second term, note that V rπpxq “ Es„bp¨|x1
q

a„rπp¨|x1
q

rrps, aqs ` γ Ex1
„rpp¨|x,aq

a„rπp¨|x1
q

rV rπpx1qs. Therefore,

B “ γ E
s„bp¨|x1

q

a„rπp¨|x1
q

„

E
s1„pp¨|s,aq

rV πE ps1qs

ȷ

´ γ E
x1

„rpp¨|x,aq

a„rπp¨|x1
q

rV rπpx1qs.

By observing that
ş

S bps|xqpps1|s, aqds “
ş

X p̃px1|x, aqbps1|x1qdx1, that is, the probability of the next state conditioned on
the current augmented state x and the action a can be computed by either conditioning on the probability of the current
unobserved state s or conditioning on the next augmented state x1.

B “ γ E
x1

„rpp¨|x,aq

a„rπp¨|x1
q

„

E
s„bp¨|x1q

rV πE ps1qs ´ V rπpx1q

ȷ

“ γ E
x1

„rpp¨|x,aq

a„rπp¨|x1
q

“

Ipx1q
‰

,

where we have recognised the quantity of interest I taken at another augmented state. One can thus iterate as in the original
performance difference lemma to get

Ipxq “

8
ÿ

t“0

γtErπ

»

—

–

E
s„bp¨|xtq

rV πE psqs ´ E
s„bp¨|xtq

a„rπp¨|xtq

rQπE ps, aqs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x0 “ x

fi

ffi

fl

“
1

1 ´ γ
E

x1„drπ
x

»

—

–

E
s„bp¨|x1q

rV πE psqs ´ E
s„bp¨|x1

q

a„rπp¨|x1
q

rQπE ps, aqs

fi

ffi

fl

, (13)

where Equation (13) is obtained by recognising the discounted state distribution under policy rπ. This completes the proof.

We now assume non-integer delay, setting ∆ P p0, 1q but the proof for ∆ P R follows easily. The proof is the same as above
except for substituting b with b∆. One step which might not be evident is that

ż

S
b∆pst`∆|xtqppst`1`∆|st`∆, aq dst`∆ “

ż

X
p̃pxt`1|xt, aqb∆pst`1`∆|xt`1q dxt`1.

This is true because, for xt “ pst, at´1q, xt`1 “ pst`1, atq P X ,
ż

S
b∆pst`∆|xtqppst`1`∆|st`∆, aq dst`∆

“

ż

S
b∆pst`∆|xtq

ż

S
b∆pst`1`∆|st`1, aqb1´∆pst`1|st`∆, aq dst`1 dst`∆ (14)

“

ż

S
b∆pst`1`∆|st`1, aq

ż

S
b∆pst`∆|xtqb1´∆pst`1|st`∆, aq dst`∆ dst`1

“

ż

S
b∆pst`1`∆|st`1, aq

ż

S
b∆pst`∆|st, at´1qb1´∆pst`1|st`∆, aq dst`∆ dst`1

“

ż

A

ż

S
b∆pst`1`∆|st`1, atqδapatq

ż

S
b∆pst`∆|st, at´1qb1´∆pst`1|st`∆, aq dst`∆ dst`1 dat (15)

“

ż

X
b∆pst`1`∆|xt`1qp̃pxt`1|xt, aq dxt`1

where Equation (14) holds by replacing the transition p as in Equation (4) and Equation (15) holds by definition of the
transition in the augmented MDP.

Theorem 6.1. Consider an pLP , Lrq-LC MDP and a Lπ-LC undelayed policy πE , such that QπE is LQ -L.C.4. Let rπb be

4In fact, only Lipschizness in the second argument is necessary (see proof).
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the ∆-delayed policy defined as in Equation (3), with ∆ P Rě0. Then, for any x P X ,

E
s„bp¨|xq

rV πE psqs ´ V rπbpxq ď
LQLπ

1 ´ γ
σx
b ,

where σx
b “ E

x1
„d

rπb
x

s,s1
„bp¨|x1

q

rdSps, s1qs.

Proof. We first prove the result for integer delay ∆ P N. The first step in this proof is to use the results of Lemma 6.1,
which yields, for any x P X :

E
s„bp¨|xq

rV πE psqs ´ V rπbpxq ď
1

1 ´ γ
E

x1„d
rπb
x

»

—

—

—

—

—

—

–

E
s„bp¨|x1q

rV πE psqs ´ E
s„bp¨|x1

q

a„rπbp¨|x1
q

rQπE ps, aqs

looooooooooooooooooooooooomooooooooooooooooooooooooon

A

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We consider the term inside the expectation over x1, called A. We reformulate this term to highlight how we then apply
Proposition A.3.

A “ E
s„bp¨|x1q

»

—

–

E
a1„πEp¨|sq

a2„rπbp¨|x1
q

rQπE ps, a1q ´ QπE ps, a2qs

fi

ffi

fl

ď LQ E
s„bp¨|x1q

“

W1pπEp¨|sq}rπbp¨|x1qq
‰

. (16)

To finish the proof, it remains to upper bound Es„bp¨|x1q rW1pπEp¨|sq}rπbp¨|x1qqs with σx
b – E

x1
„d

rπb
x

s,s1
„bp¨|x1

q

rdSps, s1qs.

One has

W1pπEp¨|sq}rπbp¨|x1qq “ sup
}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

A
fpaqpπEpa|sq ´ rπbpa|x1qqda

ˇ

ˇ

ˇ

ˇ

“ sup
}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

A
fpaqpπEpa|sq ´

ż

S
πEpa|s1qbps1|x1qds1qda

ˇ

ˇ

ˇ

ˇ

(17)

ď

ż

S
bps1|x1q sup

}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

A
fpaqpπEpa|sq ´ πEpa|s1qqda

ˇ

ˇ

ˇ

ˇ

ds1 (18)

ď

ż

S
bps1|x1qW1pπEp¨|sq}πEp¨|s1qqds1

ď Lπ

ż

S
bps1|x1q dSps, s1qds1, (19)

where Equation (17) holds by definition of the optimal imitated delayed policy (see Equation (3)), Equation (18) holds
by application of Fubini-Tonelli’s theorem and Equation (19) holds by Lipschitzness of the expert undelayed policy. By
re-injecting this result into Equation (16) we get the desired result.

We now assume non-integer delay, setting ∆ P p0, 1q but the proof for ∆ P R follows easily. In this case, the optimal policy
learnt by DIDA is

rπbpa|xq “

ż

S
b∆ps|xqπEpa|sqds. (20)

The proof remains the same except for the first step, where Lemma 6.1 is of course applied in its non-integer delay
version.
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Corollary 6.2. Under the assumptions of Theorem 6.1 adding that S Ă Rn is equipped with the Euclidean norm. Then, for
any x P X ,

E
s„bp¨|xq

rV πE psqs ´ V rπbpxq ď
2LQLπ

1 ´ γ

E
x1„d

rπb
x p¨q

«

c

Var
s„bp¨|x1q

ps|x1q

ff

.

Proof. The result follows from application of Lemma A.1 to Theorem 6.1.

Corollary 6.1. Under the assumptions of Theorem 6.1, adding that the MDP is LT -TLC, then, for any x P X ,

E
s„bp¨|xq

rV πE psqs ´ V rπbpxq ď
2∆LTLQLπ

1 ´ γ
.

Proof. The result follows from application of Lemma A.2 to Theorem 6.1.

B.1. Lower Bounding the Value Function

Theorem 6.2. For every Lπ ą 0, LQ ą 0, there exists an MDP such that the optimal policy is Lπ-LC, its state action value
function is LQ-LC in the second argument, but for any ∆-delayed policy rπ, with ∆ P Rě0, and any x P X

E
s„bp¨|xq

rV ˚psqs ´ V rπpxq ě

?
2

?
π

LQLπ

1 ´ γ

E
x1„dπ̃

xp¨q

«

c

Var
s„bp¨|x1q

ps|x1q

ff

,

where V ˚ is the value function of the optimal undelayed policy.

Proof. We consider an MDP M “ pS,A, p, R, µ, γq such that S “ R and A “ R, its state transition is given by
st`1 “ st ` a

Lπ
` εt, where εt

i.i.d.
„ N p0, σ2q. The transition distribution can be written as

pps1|s, aq “ N
ˆ

s1; s `
a

Lπ
, σ2

˙

.

Defining Lr :“ LQLπ, the reward is given by rps, aq “ ´Lr

ˇ

ˇ

ˇ
s ` a

Lπ

ˇ

ˇ

ˇ
. Note that the reward is always negative, yet the

policy π˚p¨|sq “ δ´Lπsps1q always yields 0 reward and is therefore optimal. Clearly, its value function satisfies V ˚psq “ 0
for every s P S. Its Q function is

Q˚ps, aq “ ´Lr

ˇ

ˇ

ˇ

ˇ

s `
a

Lπ

ˇ

ˇ

ˇ

ˇ

` γ

ż

R
V ˚ps1q pps1|s, aq ds1

“ ´Lr

ˇ

ˇ

ˇ

ˇ

s `
a

Lπ

ˇ

ˇ

ˇ

ˇ

“ ´LQ |Lπs ` a| .

Therefore, Q˚ is indeed LQ-LC in the second argument.

Consider now any ∆-delayed policy rπ. At each time step t, the current state st can be decomposed in this way

st “ st´∆´1 `

t´1
ÿ

τ“t´∆´1

aτ
Lπ

looooooooooooomooooooooooooon

“:ϕpxtq

`

t´1
ÿ

τ“t´∆´1

ετ

looooomooooon

ϵ

,
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where the first quantity is a deterministic function of the augmented state, while the second is distributed under N p0, dσ2q.
The expected value of the instantaneous reward is then given by

Errpxt, aqs “ ´Lr E
„

ˇ

ˇ

ˇ

ˇ

st `
a

Lπ

ˇ

ˇ

ˇ

ˇ

ȷ

“ ´Lr E

«
ˇ

ˇ

ˇ

ˇ

ˇ

ϕpxtq `
a

Lπ
`

t´1
ÿ

τ“t´∆´1

ετ

ˇ

ˇ

ˇ

ˇ

ˇ

ff

.

The function f : y ÞÑ E r|N py, σq|s has minimum at 0 by symmetry of the normal distribution. Its value is the mean of a
half-normal distribution, that is E r|N p0, σq|s “

?
2?
π
σ. Therefore

Errpxt, aqs ď ´Lr

?
2

?
π

?
dσ,

which implies

V rπpxtq ď ´
Lr

1 ´ γ

?
2

?
π

?
dσ

“ ´
LQLπ

1 ´ γ

?
2

?
π

c

Var
s„bp¨|x1q

ps|x1q,

by noticing that Lr “ LQLπ and that Vars„bp¨|xqps|xq “ dσ2. Note that
b

Vars„bp¨|xqps|xq is the same for each x P X so

we can replace it with Ex1„dπ̃
xp¨q

”b

Vars„bp¨|x1qps|x1q

ı

to have a result more similar to Theorem 6.1.

Recalling that the optimal value function had value 0 at any state concludes the proof.

C. Bounding the Value Function via the State Distribution
For this bound, we wish to use the difference in state distribution between the delayed and the undelayed expert to grasp
their difference. Obviously, they do not share the same state space since the DMDP is handled by augmenting the state.
However, it is possible to define a unifying framework with the following object. In this section, we consider ∆ P N.

Definition C.1 (∆th-order MDP). Given an MDP M “ pS,A, p, R, µq, we define its correspondent ∆th-order MDP, ∆ P N,
as the MDP ĎM (a “s” will be used to refer to an element of an ∆th-order MDP) with

• State space sS “ S∆`1 ˆ A∆, whose states ss are composed of the last ∆ ` 1 states and ∆ actions of the MDP, namely
ss “ ps1, a1, s2, a2, . . . , s∆, a∆, s∆`1q.

• Unchanged action space A.

• Reward function R, overwriting the undelayed notation but using as input a ∆th-order state, such that
Rpsst, aq “ Rpst, aq. The overwriting is justified by this equality.

• Transition function sp given by

sppss1|ss, aq “ pps1
∆`1|s∆`1, aqδapa1

∆q

∆
ź

i“1

δsi`1ps1
iq

d´1
ź

i“1

δai`1pa1
iq, (21)

where ss “ ps1, a1, . . . , a∆, s∆`1q and ss1 “ ps1
1, a

1
1, . . . , a

1
∆, s

1
∆`1q .

• The initial state distribution sµ is such that the inital action queue x is distributed as in the delayed MDP while the
states of the states queue are distributed as si`1 „ pp¨|si, aiq.

This definition is inspired from the concept of ∆th-order Markov chain. In this definition, s∆`1 is intended to be the current
state, while s1 is the ∆-delayed state, a1:∆ is the action queue. Therefore, from the state of the ∆th-order MDP, one can
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either extract an extended state and query a delayed policy or the extract the current state and query an undelayed policy.
This implies that one can define the state distribution on the ∆th-order MDP for both an undelayed and a delayed policy. We
overwrite the notations and write respectively dπ and dsπ the distribution of state on the ∆th-order MDP. The fact that the
distribution concerns a ∆th-order state and not a state from the underlying MDP or DMDP will be clear from the notation of
the variable which is sampled from this distribution. For instance, in s „ dπ , dπ is a distribution defined by applying π on
the undelayed MDP while s̃ „ dπ assumes a distribution under π on the ∆th-order MDP.

Before deriving bounds on the ∆th-order state probability distribution, we first prove a Lipschitzness result concerning the
∆th-order MDP which be used in later proofs.

Lemma C.1. Consider an pLP , Lrq-LC MDP and its ∆th-order MDP counterpart. Let f : sS Ñ R such that ∥f∥L ď 1
w.r.t. to the L2-norm on sS. Then, the function

gf : sS ˆ A ÝÑ R

pss, aq ÞÝÑ

ż

sS
fpss1qsppss1|ss, aq dss1,

is LP -LC w.r.t. the second variable.

Proof. Let ss P sS such that ss “ ps1, a1, . . . , a∆, s∆`1q and a, b P A. Then,

|gf pss, aq ´ gf pss, bq| “

ˇ

ˇ

ˇ

ˇ

ż

sS
fpss1q

`

sppss1|ss, aq ´ sppss1|ss, bq
˘

dss1

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

SˆA
fps2, a2, . . . , s∆`1, a

1
∆`1, s

1
∆`1q (22)

`

pps1
∆`1|s∆`1, aqδapa1

∆`1q ´ pps1
∆`1|s∆`1, bqδbpa1

∆`1q
˘

ds1
∆`1 da

1
∆`1

ˇ

ˇ

ˇ

ˇ

(23)

where in Equation (23) we integrate over the elements of ss fixed by the Dirac distributions of Equation (21) except for the
last action. Note that h :“ ps, aq ÞÑ fps2, a2, . . . , s∆`1, a, sq is 1-LC because f is 1-LC. We add and substract the quantity
pps1

∆`1|s∆`1, bqδapa∆`1q inside the integral to get

|gf pss, aq ´ gf pss, bq| ď

ˇ

ˇ

ˇ

ˇ

ż

SˆA
δapa1

∆`1qhpa1
∆`1, s

1
∆`1q

`

pps1
∆`1|s∆`1, aq ´ pps1

∆`1|s∆`1, bq
˘

ds1
∆`1 da

1
∆`1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

SˆA
hpa1

∆`1, s
1
∆`1qpps1

∆`1|s∆`1, bq
`

δapa1
∆`1q ´ δbpa1

∆`1q
˘

ds1
∆`1 da

1
∆`1

ˇ

ˇ

ˇ

ˇ

ď pLP ` 1q dApa, bq,

where the last inequality follows by integrating over s1
∆`1 for the first integral and a1

∆`1 for the second, before taking the
supremum over functions h and recognising the Wasserstein distance.

We can now prove a first important intermediary result which bounds the Wasserstein divergence in discounted state
distribution in the ∆th-order MDP between the undelayed and the delayed policy.

Theorem C.1. Consider an pLP , Lrq-LC MDP M and its pL
sP , Lrq-LC ∆th-order MDP counterpart ĎM. Let πE be a

Lπ-LC undelayed policy and assume that γLP p1 ` Lπq ď 1. Let rπb be a delayed policy as defined in Equation (3). Then,
the two discounted state distributions dπE

sµ , drπb
sµ defined on ĎM satisfy

W1

´

dπE
sµ }drπb

sµ

¯

ď γLQp1 ` LP qσrµ
b

where σrµ
b “ E

x„d
rπb
rµ

s,s1
„bp¨|xq

rdSps, s1qs and drπb

rµ is defined on the DMDP.
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Proof. We start by developing the term W1

´

dπE
sµ }drπb

sµ

¯

, using the supremum over the space of functions f : sS Ñ R such

that ∥f∥L ď 1 w.r.t. to the L2-norm on sS.

W1

´

dπE
sµ }drπb

sµ

¯

“ sup
}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

sS
fpssq

´

dπE
sµ pssq ´ drπb

sµ pssq

¯

dss

ˇ

ˇ

ˇ

ˇ

.

We then use the fact that for some policy π P Π, dπ
sµpssq “ p1 ´ γqsµpssq ` γ

ş

sS spπpss|ss1qdπ
sµpss1q dss1, where spπpss|ss1q “

ş

A ppss1|ss, aqπpa|ssq da to yield

W1

´

dπE
sµ }drπb

sµ

¯

“ γ sup
}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

sS
fpssq

ż

sS

´

spπE pss|ss1qdπE
sµ pss1q ´ sprπbpss|ss1qdrπb

sµ pss1q

¯

dss1 dss

ˇ

ˇ

ˇ

ˇ

ď γ sup
}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

sS
fpssq

ż

sS

´

dπE
sµ pss1q ´ drπb

sµ pss1q

¯

spπE pss|ss1q dss1 dss

ˇ

ˇ

ˇ

ˇ

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

A

` γ sup
}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

sS
fpssq

ż

sS

´

spπE pss|ss1q ´ sprπbpss|ss1q

¯

drπb
sµ pss1q dss1 dss

ˇ

ˇ

ˇ

ˇ

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

B

, (24)

where Equation (24) follows by adding and subtracting the term spπE pss|ss1qdrπb
sµ pss1q and using the triangular inequality.

The first term A can be bounded by using Fubini’s theorem first and then leveraging Proposition A.4 which implies that
ş

sS fpssqspπE pss|ss1q dss1 is LP p1 ` Lπq-LC. Therefore

A ď LP p1 ` LπqW1

´

dπE
sµ }drπb

sµ

¯

Now looking at the second term B, we will develop the term spπE and sprπb to highlight the influence of the policy and
leverage Equation (3). We note ss “ ps1, a1, . . . , a∆, s∆`1q and ss1 “ ps1

1, a
1
1, . . . , a

1
∆, s

1
∆`1q. Moreover, we overwrite the

notation of the belief to use it on a ∆th-order state such that bpz|ssq “ bpz|s1, a1, . . . , a∆q, that is, the belief is based on the
augmented state constructed from the oldest state inside ss and the sequence of action it contains.

B “ sup
}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

sS
fpssq

ż

sS

ˆ
ż

A
sppss|ss1, aqπEpa|s1

∆`1q da ´

ż

A

ż

zPS
sppss|ss1, aqbpz|ss1qπEpa|zq dz da

˙

drπb
sµ pss1q dss1 dss

ˇ

ˇ

ˇ

ˇ

“ sup
}f}Lď1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

sS
fpssq

¨

˚

˚

˝

ż

sS

ż

A

ˆ

πEpa|s1
∆`1q ´

ż

zPS
bpz|ss1qπEpa|zq dz

˙

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

C

sppss|ss1, aq da drπb
sµ pss1q dss1 dss

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,

where the term C in this equation accounts for the difference in taking an action with the undelayed policy πE instead of the
belief-based policy. Fubini’s theorem yields

B “ sup
}f}Lď1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

sS

ż

A

ˆ

πEpa|s1
∆`1q ´

ż

zPS
bpz|ss1qπEpa|zq dz

˙ ˆ
ż

sS
fpssqsppss|ss1, aq dss

˙

looooooooooooomooooooooooooon

gf pss1,aq

da drπb
sµ pss1q dss1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,

where we note gf pss1, aq :“
ş

sS fpssqsppss|ss1, aq dss. This function is p1 ` LP q-LC in a by Lemma C.1. Noting also that
πEpa|ss1

∆`1q “
ş

zPS πEpa|ss1
∆`1qbpz|ss1qdz, one gets

B “ sup
}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

sS

ż

zPS

ż

A

`

πEpa|s1
∆`1q ´ πEpa|zq

˘

gf pss1, aq dabpz|ss1q dz drπb
sµ pss1q dss1

ˇ

ˇ

ˇ

ˇ
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Then, by Lipschitzness of πE ,

B ď Lπp1 ` LP q

ż

sS

ż

zPS
dSps1

∆`1, zqbpz|ss1q dz drπb
sµ pss1q dss1.

Now, one can observe that s ÞÑ
ş

sS δps “ s∆`1qdrπb
sµ pssq dss and s ÞÑ

ş

X bps|xqdrπb

rµ pxq dx define the same distribution over S .

Note that the discounted state distributions drπb
sµ pssq is over the ∆th-order MDP’s state space while drπb

rµ pxq is over the DMDP’s
state space. This yields

B ď Lπp1 ` LP q

ż

X

ż

s1PS

ż

sPS
dSps, s1qbps|xqbps1|xq ds ds1 drπb

rµ pxq dx

“ Lπp1 ` LP q E
x„d

rπb
rµ

s,s1
„bp¨|xq

“

dSps, s1q
‰

“ Lπp1 ` LP qσrµ
b .

One can now resume at Equation (24), and recording that γLP p1 ` Lπq ď 1, one gets

W1

´

dπE
sµ }drπb

sµ

¯

ď γLP p1 ` LπqW1

´

dπE
sµ }drπb

sµ

¯

` γLπp1 ` LP qσµ
b

ď
γLπp1 ` LP q

1 ´ γLP p1 ` Lπq
σrµ
b .

Finally, recalling that LQ “ Lr

1´γLP p1`Lπq
finishes the proof.

the previous results will be useful to prove a bound on the value function. However, before providing this result, we need a
last intermediary result.

Proposition C.1. The ∆th-order MDP ĎM can be reduced to an ∆th-order MDP where the mean reward is redefined as
srpss, aq “ rps1, a1q. Because it doesn’t depend upon a, we equivalently write srpssq :“ srpss, aq

Proof. We derive a similar proof as Katsikopoulos & Engelbrecht (2003). Let V π be the value function of any stationary
Markovian policy π on ĎM and sV π its value function based on the reward sr. We show that there exist a quantity Ipssq such
that sV πpssq “ Ipssq ` V πpssq. Since the quantity Ipssq does not depend on π, it means that the ordering of the policies in
terms of value function and thus performance is preserved by using this new reward function. Note that we can express
the tth state in ĎM as a tuple of element of the underlying MDP as sst “ pst´∆, at´∆, . . . , at´1, stq. We allow for negative
indexing in the underlying MDP for the first term which are fixed by sµ.

We now proceed to the write sV π to introduce as a function of V πpssq.

sV πpssq “ E
sst`1„pp¨|sst,atq

at„πp¨|sstq

«

8
ÿ

t“0

γt
srpsst, atq

ˇ

ˇ

ˇ

ˇ

ˇ

ss0 “ ss

ff

“ E
sst`1„pp¨|sst,atq

at„πp¨|sstq

«

8
ÿ

t“0

γtrpst´∆, at´∆q

ˇ

ˇ

ˇ

ˇ

ˇ

ss0 “ ss

ff

“ E
sst`1„pp¨|sst,atq

«

∆´1
ÿ

t“0

γtrpst´∆, at´∆q

ˇ

ˇ

ˇ

ˇ

ˇ

ss0 “ ss

ff

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

Ipssq

` E
sst`1„pp¨|sst,atq

at„πp¨|sstq

«

8
ÿ

t“∆

γtrpst´∆, at´∆q

ˇ

ˇ

ˇ

ˇ

ˇ

ss0 “ ss

ff

.

Two things have to be noted in the previous equation, first, the term on the left does not depend on π anymore since the
actions involved in the reward collection are already contained in ss. It is our sought-after quantity I . Second, the reward in
the term of the right can be interpreted are regular reward of a ∆th-order MDP since rpsst, atq “ rpst, atq.



Delayed Reinforcement Learning by Imitation

Therefore,

sV πpssq “ Ipssq ` E
sst`1„pp¨|sst,atq

at„πp¨|sstq

«

8
ÿ

t“∆

γtrpsst, atq

ˇ

ˇ

ˇ

ˇ

ˇ

ss0 “ ss

ff

“ Ipssq ` V πpssq.

We found such a quantity I to link sV π and V π , proving the statement.

We are now able to prove a bound between delayed and undelayed value functions.

Theorem C.2. Consider an pLP , Lrq-LC MDP M and its ∆th-order MDP counterpart ĎM. Let πE be a Lπ-LC undelayed
policy and assume that γLP p1 ` Lπq ď 1. Let rπb be a delayed policy as defined in Equation (3). Then, for any ss P sS,

ˇ

ˇ

ˇ
V πE pssq ´ V rπbpssq

ˇ

ˇ

ˇ
ď

γ

1 ´ γ
LπLQp1 ` LP qσx

b ,

where V πE and V rπb are defined on ĎM and σx
b “ E

x„d
rπb
x

s,s1
„bp¨|xq

rdSps, s1qs for x the augmented state contained in ss and drπb
x

being defined on the DMDP.

Proof. By (Puterman, 2014), the two state value functions can be written as follows.

V πE pssq “
1

1 ´ γ

ż

sS

ż

sA
rpss1, aqπEpa|ssqdπE

ss pss1q da dss1.

V rπbpssq “
1

1 ´ γ

ż

sS

ż

sA
rpss1, aqrπbpa|ssqdrπb

ss1 pssq da dss1.

Writing their difference gives

V πE pssq ´ V rπbpssq “
1

1 ´ γ

ż

sS

ż

sA
rpss1, aq

´

πEpa|ssqdπE
ss pss1q ´ rπbpa|ssqdrπb

ss pss1q

¯

da dss1.

We now use Proposition C.1 to remove the integral over the action space.

V πE pssq ´ V rπbpssq “
1

1 ´ γ

ż

sS

ż

sA
srpss1q

´

πEpa|ssqdπE

ss1 pssq ´ rπbpa|ssqdrπb
ss pss1q

¯

da dss1

“
1

1 ´ γ

ż

sS
srpss1q

´

dπE
ss pss1q ´ drπb

ss pss1q

¯

dss1.

One can now use the fact that sr is Lr-LC on sS because r is Lr-LC on S ˆ A. One thus gets
ˇ

ˇ

ˇ
V πE pssq ´ V rπbpssq

ˇ

ˇ

ˇ
ď

Lr

1 ´ γ
W1

´

dπE
ss }drπb

ss

¯

.

Applying Theorem C.1 yields
ˇ

ˇ

ˇ
V πE pssq ´ V rπbpssq

ˇ

ˇ

ˇ
ď

γ

1 ´ γ
LπLQp1 ` LP qσx

b ,

where x is the augmented state contained in ss. This concludes the proof.

As for Theorem 6.1, we can now use additional assumptions to bound σµ
b .

Corollary C.1. Under the conditions of Theorem C.2 and adding that S Ă Rn is equipped with the Euclidean norm. Let rπb

be a ∆-delayed policy as defined in Equation (3). Then, for any ss P sS,

ˇ

ˇ

ˇ
V πE pssq ´ V rπbpssq

ˇ

ˇ

ˇ
ď

γ

1 ´ γ
LπLQp1 ` LP q E

x1„dπ̃
xp¨q

«

c

Var
s„bp¨|x1q

ps|x1q

ff

.
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Proof. The result follows from application of Lemma A.1 to Theorem C.2.

Corollary C.2. Under the conditions of Theorem C.2 and adding that the MDP is LT -TLC. Let rπb be a ∆-delayed policy
as defined in Equation (3). Then,

›

›

›
V πE ´ V rπb

›

›

›

8
ď

2∆γ

1 ´ γ
LTLQLπp1 ` LP q

where V πE and V rπb are defined on sS.

Proof. First, one applies Lemma A.2 to Theorem C.2 to obtain
ˇ

ˇ

ˇ
V πE pssq ´ V rπbpssq

ˇ

ˇ

ˇ
ď

2∆γ

1 ´ γ
LπLQp1 ` LP q,

for some ss P sS. Then, taking the maximum over sS gives the result since the rhs doesn’t depend on ss.

C.1. Comparison of the Two Bounds

As stated in Section 6, there are several choices for the quantities to consider when comparing undelayed to delayed
performance. In this paper, Theorem C.2 provides a bound on the space of ∆th-order MDP ( sS) while Theorem 6.1 compares
a value function on the space of the augmented MDP (X ) to a value function on the classic state space (S).

Recall the bounds for ss P sS of Theorem C.2
ˇ

ˇ

ˇ
V πE pssq ´ V rπbpssq

ˇ

ˇ

ˇ
ď

γ

1 ´ γ
LπLQp1 ` LP qσx

b , (25)

and for x P X of Theorem 6.1

E
s„bp¨|xq

rV πE psqs ´ V rπbpxq ď
LQLπ

1 ´ γ
σx
b , (26)

where σx
b “ E

x1
„d

rπb
x

s,s1
„bp¨|x1

q

rdSps, s1qs.

As opposed to what the notations may suggest, the Lipschitz constant LQ doesn’t have exactly the same value. In
Equation (25), we recognised in the proof the LQ of the Q function as given in Rachelson & Lagoudakis (2010) under the
assumption that γLP p1 ` Lπq ď 1. In Equation (26) however, we only assume that there exists such constant LQ for which
the Q function is LQ-LC. That includes the case when γLP p1 ` Lπq ď 1 but is a more general result.

The other difference between the bounds lies in the factor γpLP ` 1q of Equation (25). Depending on the task, this factor
may be smaller or greater than 1, changing the order of the bounds.

D. DIDA for non-integer delays
We provide a midification of Algorithm 1 to account for non-integer delays in Algorithm 2. Note that we consider a delay
∆ P Rě0 and we note t∆u the integer part of ∆ and t∆u :“ ∆ ´ t∆u its fractional part. We consider a continuous MDP
which yields M and Mt∆u.

E. Experimental details
E.1. Imitation Loss and DIDA’s Policy

As stated in the main paper, the function learnt by DIDA can drift from Equation (3) depending on the class of policies of πI

and the loss function that is used for the imitation step. We derive the policy learnt by DIDA for the two following cases.

Mean squared error loss DIDA is trained on

argmin
θ

ż

S

ż

A
pa ´ rπθpxqq2πEpa|sqbps|xqda ds
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Algorithm 2 DIDA for non-integer delays (∆ P r0, 1sq

Inputs t∆u :“ ∆ ´ t∆u, continuous MDP yielding M and Mt∆u, undelayed expert πE trained on Mt∆u, β routine,
number of steps N , empty dataset D.
Outputs: delayed policy πI

1: for βi in β-routine do
2: for j in t1, . . . , Nu do
3: if New episode then
4: Initialize state buffer ps1, s1`t∆u, s2, . . . , sr∆s, s∆`1q and action buffer pa1, a2 . . . , ar∆sq

5: end if
6: Sample aE „ πEp¨|s∆q, set a “ aE
7: if Random u „ Upr0, 1sq ě βi then
8: Overwrite a „ πIp¨|rs1, a1, . . . , ar∆ssq

9: end if
10: Aggregate dataset:

D Ð D Y prs1, a1, a2, . . . , ar∆ss, aEq

11: Apply a at s∆ and get new states pst∆u`2, s∆`2q

12: Update buffers:
ps1, s1`t∆u, s2, . . . , sr∆s, s∆`1q Ð ps2, s2`t∆u, s2, . . . , sr∆s`1, s∆`2q

pa1, . . . , ar∆sq Ð pa2, . . . , ar∆s, aq

13: end for
14: Train πI on D
15: end for

which is minimized for θ˚ such that

rπθ˚ pxq “

ż

S
E

a„πEp¨|sq
rasbps|xqds.

That means that the policy learnt by DIDA outputs the mean value of the action given the belief and the expert policy
distribution.

Kullback-Leibler loss DIDA is trained on

argmin
θ

ż

S
DKLpπEp¨|sq}rπθp¨|xqqbps|xqds

“ argmin
θ

ż

S

ż

A
πEpa|sq log πEpa|xqqbps|xqda ds ´

ż

S

ż

A
πEpa|sq log rπθpa|xqqbps|xqda ds

“ argmin
θ

´

ż

S

ż

A
πEpa|sq log rπθpa|xqqbps|xqda ds (27)

“ argmin
θ

´

ż

A

ż

S
πEpa|sq log rπθpa|xqqbps|xqds da (28)

“ argmin
θ

ż

A

ż

S
πEpa|sqbps|xq log pbps|xqπEpa|xqqq ds da ´

ż

A

ż

S
πEpa|sq log rπθpa|xqqbps|xqds da

“ argmin
θ

DKL

ˆ
ż

S
πEp¨|sqbps|xqds, rπθp¨|xq

˙

,

where Equation (27) holds because the first integral does not depend on θ and Equation (28) holds by Fubini’s theorem since
the functions inside the integral are always negative.

E.2. Hyper-parameters

For pendulum, the test performance are obtained from interacting 1000 steps with the environment, with maximum episode
length of 200. For mujoco environments, the number of steps is 1000 as well but the maximum episode length is 500. The
other of hyper-parameter are given for each approach, for each environment in the following tables.
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Hyper-parameter Pendulum Mujoco Trading
Policy type Feed-forward Feed-forward Extra Trees
Iterations 245 400 10
Steps per iteration 10,000 10,000 2 years of data
β sequence β1 “ 1, βiě2 “ 0 β1 “ 1, βiě2 “ 0 β1 “ 1, βiě2 “ 0
Max buffer size 10 iterations 10 iterations Unlimited
Policy neurons r100, 100, 10s r100, 100, 100, 10s H

Activations ReLU (Nair & Hinton, 2010) ReLU H

Optimizer Adam pβ1 “ 0.9, β2 “ 0.999q

(Kingma & Ba, 2014)
Adam pβ1 “ 0.9, β2 “ 0.999q H

Learning rate 1e ´ 3 1e ´ 3 H

Batch size 64 64 H

Min samples split H H 100
n estimators H H 100

Table 1: Hyper-parameters for DIDA

Hyper-parameter Pendulum Mujoco
Epochs 2000 1000
Steps per epoch 5000 5000
Pre-training epochs 25 25
Pre-training steps 10000 10000
Backtracking line search iterations 10 10
Backtracking line search step 0.8 0.8
Conjugate gradient iterations 10 10
Discount γ 0.99 0.99
Max KL divergence 0.001 0.001
λ for GAE (Schulman et al., 2015b) 0.97 0.97
Value function neurons r64s r64s

Value function iterations 3 3
Value function learning rate 0.01 0.01
Policy neurons r64, 64s r64, 64s

Activations ReLU ReLU
Encoder feed-forward neurons r8s r8s

Encoder learning rate 0.01 0.01
Encoder iterations 2 2
Encoder dimension 64 64
Encoder heads 2 2
Encoder optimizer Adam pβ1 “ 0.9, β2 “ 0.999q Adam pβ1 “ 0.9, β2 “ 0.999q

Layers of MAF (Papamakarios et al., 2017) 5 5
Maf neurons r16s r16s

MAF learning rate 0.01 0.01
MAF optimizer Adam pβ1 “ 0.9, β2 “ 0.999q Adam pβ1 “ 0.9, β2 “ 0.999q

Epochs of training the belief 200 200
Batch size belief learning 10000 1000
Prediction buffer size 100000 100000
Belief representation dimension 8 32

Table 2: Hyper-parameters for D-TRPO
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Hyper-parameter Pendulum
Discount γ 0.99
Initial replay size 64
Buffer size 50000
Batch size 64
Actor µ neurons 256
Actor σ neurons 256
Actor optimizer Adam pβ1 “ 0.9, β2 “ 0.999q

Warmup transitions 100
Polyak update τ 0.005
Entropy learning rate 3e ´ 4
Train frequency 50

Table 3: Hyper-parameters for M-SAC and A-SAC

Hyper-parameter Pendulum Mujoco
Epochs 2000 1000
Steps per epoch 5000 5000
Pre-training epochs 2 2
Pre-training steps 10000 10000
Backtracking line search iterations 10 10
Backtracking line search step 0.8 0.8
Conjugate gradient iterations 10 10
Discount γ 0.99 0.99
Max KL divergence 0.001 0.001
λ for GAE 0.97 0.97
Value function neurons r64s r64s

Value function iterations 3 3
Value function learning rate 0.01 0.01
Policy neurons r64, 64s r64, 64s

Activations ReLU ReLU
Encoder feed-forward neurons r8s r8s

Encoder learning rate 5e ´ 3 5e ´ 3
Encoder iterations 1 1
Encoder dimension 64 64
Encoder heads 2 2
Encoder optimizer Adam pβ1 “ 0.9, β2 “ 0.999q Adam pβ1 “ 0.9, β2 “ 0.999q

Batch size belief learning 10000 1000
Prediction buffer size 100000 100000
Belief representation dimension 8 32

Table 4: Hyper-parameters for L2-TRPO
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Hyper-parameter Pendulum Mujoco
Epochs 2000 1000
Steps per epoch 5000 5000
Pre-training epochs 2 2
Pre-training steps 10000 10000
Backtracking line search iterations 10 10
Backtracking line search step 0.8 0.8
Conjugate gradient iterations 10 10
Discount γ 0.99 0.99
Max KL divergence 0.001 0.001
λ for GAE 0.97 0.97
Value function neurons r64s r64s

Value function iterations 3 3
Value function learning rate 0.01 0.01
Policy neurons r64, 64s r64, 64s

Activations ReLU ReLU

Table 5: Hyper-parameters for M-TRPO and A-TRPO

Hyper-parameter Pendulum
Epochs 2000
Steps per epoch 5000
Discount γ 0.99
Eligibility trace λ 0.9
Learning rate 0.1
ϵ-greedy parameter 0.2
S discretization size 15
A discretization size 3

Table 6: Hyper-parameters for SARSA

Hyper-parameter Pendulum
Epochs 2000
Steps per epoch 5000
Discount γ 0.99
Eligibility trace λ 0.9
Learning rate 0.1
ϵ-greedy parameter 0.2
S discretization size 15
A discretization size 3

Table 7: Hyper-parameters for dSARSA

E.3. Further experiments

Stochastic Pendulum In this experiment, we evaluate DIDA on a stochastic environment. We follow Liotet et al. (2021)
and add stochasticity to the pendulum environment. In order to do so, to the action selected by the agent, we add an i.i.d.
noise of the form ϵ “ scalepη ` shiftq where η is some probability distribution. We construct 6 such noises reported in
Table 8. For readability of the plots, we group noises by similarity. We build an additional noise, referred to as uniform
noise, which follows the action of the agent with probability 0.9 and otherwise samples an action uniformly at random inside
the action space. We place this noise in group 2. The results are obtained with the hyper-parameters given in Appendix E.2
for the pendulum environment.
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Noise Distribution η Shift Scale Group
Beta (8,2) βp8, 2q 0.5 2 1
Beta (2,2) βp2, 2q 0.5 2 1
U-Shaped βp0.5, 0.5q 0.5 2 1
Triangular Triangularp´2, 1, 2q 0 1 2
Lognormal (1) Lognormalp0, 1q ´1 1 3
Lognormal (0.1) Lognormalp0, 0.1q ´1 1 3

Table 8: Distributions for the noise added to the action in the stochastic Pendulum.

(a) Noises of group 1. (b) Noises of group 2. (c) Noises of group 3.

Figure 6: Mean return and one standard deviation (shaded) as a function of the number of steps sampled from the environment
for stochastic Pendulum with different noises (10 seeds).

• Group 1: In all these cases, we are considering noises based on beta distributions, with different parameters. We can
see in Figure 6a that our algorithm is able to achieve a much better performance compared to the ones of the baselines,
even with a fraction of the training samples. For every algorithm, the most favourable case seems to be the second
one, based on a beta p2, 2q noise. This may be because of the features of the other two noises. The first, beta p8, 2q, is
non-zero mean, so that the action is affected, on average, by a translation in one direction. The third one, based on a
βp0.5, 0.5q distribution, is zero-mean, but is characterized by a higher variance than the second (0.5 vs 0.2).

• Group 2: Here again, we see in Figure 6b that DIDA is able to get the best performance, even if the two baselines
seem to learn much faster than for group 1. This suggest that group 2 contains easier tasks, even though the triangular
noise is not symmetric. Still, note that even if the probability of the random action in the first case is small, in the
situation of delay it accumulates so that the probability of having a random action inside the action queue of ∆ “ 5 is
1 ´ 0.95 « 0.41. Nonetheless, DIDA seems to deal very well with this situation.

• Group 3: Being strongly asymmetric and unbounded, theses noises pose more challenge to the algorithms. We report
the results in Figure 6c. For the Lognormal (1) noise, no algorithm reaches a satisfactory performance. However, again,
DIDA obtains the best performance for each noise.


