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Abstract

We study the problem of controlling worst-case errors in misspecified linear regres-1

sion under the random design setting, where the regression function is estimated via2

(penalized) least-squares. This setting arises naturally in value function approxima-3

tion for bandit algorithms and reinforcement learning. Our first main contribution4

is the observation that the amplification of the misspecification error when using5

least-squares is governed by the Lebesgue constant, a classical quantity from ap-6

proximation theory that depends on the choice of the feature subspace and the7

covariate distribution. We also show that this dependence on the misspecification8

error is tight for least-squares regression: in general, no method minimizing the9

empirical squared loss can improve it substantially. As a second contribution, we10

propose a method that augments the original feature set with auxiliary features11

designed to reduce the error amplification. For this method we prove an oracle12

inequality that shows that the method successfully competes with an “oracle” that13

knows the best way of using the auxiliary features to reduce error amplification. As14

an illustration, when the domain is a real interval and the features are monomials,15

we prove that in the limit as d→∞, our method reduces the amplification factor16

to O(1). Note that without our method, least-squares with the monomials (and in17

fact polynomials) will suffers a worst-case error of order Ω(d) times the one of the18

best uniform linear approximator.19

1 Introduction20

Value function approximation plays a central role in modern reinforcement learning (RL) and21

contextual bandit algorithms [Sutton and Barto, 2018, Lattimore and Szepesvári, 2020]. In many such22

settings, policies are evaluated or selected based on value estimates obtained by regressing observed23

returns. In both cases, (penalized) linear regression—based on empirical squared loss—serves as a24

core subroutine due to its simplicity and favorable computational properties [Ernst et al., 2005, Antos25

et al., 2008]. A fundamental challenge arises, however, when the true value function or reward model26

lies outside the span of the chosen features—a situation referred to as model misspecification. Recent27

work by Du et al. [2020] highlighted that in this setting, the prediction error incurred by least-squares28

regression can be amplified by a factor as large as
√
d, even when the misspecification error itself is29

small and the learner is allowed to choose the distribution of the features (importance sampling). This30

amplification phenomenon has since drawn significant attention in the RL and bandits communities,31

due to its implications for the reliability of value estimation under function approximation [Lattimore32

et al., 2020, Dong and Yang, 2023, Amortila et al., 2023, Maran et al., 2024, Amortila et al., 2024].33

In this paper, we study the problem of controlling such worst-case errors in misspecified linear regres-34

sion under the random design setting, where inputs are drawn from an unknown distribution. Our first35

main result is a sharp characterization of how the amplification of the misspecification error depends36
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on the interaction between the sampling distribution and the feature subspace. Specifically, we show37

that this amplification is governed by the Lebesgue constant—a classical quantity in approximation38

theory that captures how well the 2-norm projection underlying least-squares regression projects39

arbitrary functions onto the span of the features. This result is a significant improvement on previous40

results. While previous works pointed out that with the best covariate distribution the misspecification41

amplification factor cannot be larger than
√
d regardless of the feature-map and at the same time, for42

some feature maps
√
d is actually the best factor, our approach reveals that the amplification factor43

can range from as low as 1 for favorable features. In such scenario, one can obtain significantly44

tighter finite-sample guarantees than previously known, which universally assumed a worst-case
√
d45

scaling. Moreover, we prove that this dependence is tight: no estimator based on least squares can46

substantially improve upon this bound in general.47

Motivated by these insights, we propose a method for reducing the misspecification error amplification48

by augmenting the original feature set with extra features and then using a weighted ridge regression49

approach to regularize the corresponding projection operator. As an illustration of this idea, we50

show that when the domain is an interval and the base and extra features are monomials, our method51

reduces the amplification factor to 1 asymptotically as d→∞. In contrast, standard least squares52

remains susceptible to arbitrarily large worst-case errors for the same setting.53

2 Problem Formulation54

Our goal is to learn a linear predictor that enjoys uniform accuracy over the whole input space, even55

when the linear model is misspecified. We first detail the statistical setting, introduce the standing56

assumptions and define the performance criterion that will be used in the rest of the paper.57

The learner receives a dataset ((xt, yt))
n
t=1, where xt ∈ X and yt ∈ R. Each xt gives rise to a58

response yt = f(xt) + ηt where f : X → R is an unknown function and ηt is a noise variable.59

Assumption 1 (Sub–Gaussian Noise). The noise variables (ηt)nt=1 are independent, centered and60

σ–sub–Gaussian, meaning that, for every λ ∈ R, E[exp(λη1)] ≤ exp(σ2λ2/2). The noise variables61

are independent of the inputs (xt)
n
t=1.62

About (xt)
n
t , we are going to make the following assumption.63

Assumption 2 (Random design). Samples (xt)
n
t=1 are drawn i.i.d. from a probability distribution µ64

over X (unknown to the learner).65

We are interested in the problem of linear function approximation, when the learner is given some
feature map φd : X → Rd and aims to approximate f using fθ(·) = φd(·)⊤θ by selecting some
θ ∈ Rd based on the data available to it. In the rest of the paper, we use the short-hand φi(x) for
the i–th coordinate of φd(x) and index data points by t = 1, . . . , n. Differently from most of the
literature about this setting, motivated by the applications mentioned earlier, the performance is going
to be evaluated via the uniform, or maximum-norm, which for a function g : X → R is defined via
∥g∥∞ = supx∈X |g(x)|. We let L∞(X ) denote the set of functions with finite maximum norm. In
what follows, we assume that both f and our features φi belong to this set. For f ∈ L∞(X ) and
θ ∈ Rd we let

E∞(θ, f) := ∥fθ − f∥∞ , E∞(f) := inf
θ∈Rd

E∞(θ, f).

Thus, E∞(θ, f) is the maximum error suffered when f is approximated using fθ, while E∞(f) is the66

smallest possible value for this error; its value is unknown to the learner. When E∞(f) > 0, we say67

that the problem of estimating f is misspecified and the error E∞(f) is known as the misspecification68

error. In the next section we will be interested in investigating how the error E∞(θ̂n, f) behaves69

when θ̂n is given by ordinary least-squares (OLS) estimate:70

θ̂n,OLS = argmin
θ∈Rd

n∑
t=1

(yt − fθ(xt))
2
.
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3 Characterizing the behavior of OLS and Ridge Regression71

Let Fd = {fθ : θ ∈ Rd} denote the subspace of L∞(X ) spanned by the basis functions underlying72

the feature-map φd. As n→∞, fθ̂n,OLS
is known to converge to73

Πd,µf := argmin
g∈Fd

∥g − f∥2µ (1)

with probability one (see Györfi et al. [2006]). Here, we define ∥ · ∥2µ to stand for the L2(µ)-norm:74

For g : X → R measurable, ∥g∥2µ =
∫
X g2(x)µ(dx). Since µ is a probability measure, we have75

∥g∥2µ ≤ ∥g∥2∞. The map in Eq. (1) is known to be projection onto Fd: Πd,µ is linear, idempotent and76

for all f ∈ Fd, Πd,µf = f holds. Moreover, it is non-expansive in the L2(µ)-norm.77

By continuity, the previous comment on the convergence of the OLS estimate implies that78

limn→∞ E∞(θ̂n,OLS, f) = ∥Πd,µf − f∥∞. The first question then is thus how large ∥Πd,µf − f∥∞79

can be relative to E∞(f), or, in other words, by how much will the misspecification error E∞(f) be80

enlarged if one uses the linear projection of f to Fd. The following definition will be useful:81

Definition 1 (Lebesgue constant). Let P : L∞(X ) → L∞(X ) be a linear operator. Then, the82

L∞−norm of P is called the Lebesgue constant associated with P :83

Λ(P ) := (∥P∥∞ =) sup
f∈L∞(X ): ∥f∥∞≤1

∥Pf∥∞.

The following result holds (see Proposition 4.1 from Chapter 2 of DeVore and Lorentz [1993]):84

Lemma 1 (Lebesgue’s lemma). Let P : L∞(X )→ Fd be a linear map such that P is an identity85

on Fd. In particular, assume that for any f ∈ Fd, Pf = f . Then, for any f ∈ L∞(X ),86

∥f − Pf∥∞ ≤ (1 + Λ(P )) inf
g∈Fd

∥f − g∥∞.

Since the Lebesgue constant of our projection operators will be frequently needed, to minimize87

clutter, we introduce the shorthand for them:88

Λd,µ := Λ(Πd,µ).

With the help of this notation, from Lemma 1 we thus have89

∥f −Πd,µf∥∞ ≤ Λd,µE∞(f) . (2)

It is easy to see that Λd,µ ≥ 1: just take any f ∈ Fd such that ∥f∥∞ = 1 (such a function exist).90

Then Πd,µf = f , which gives the result. Unfortunately, there is no upper limit on how large Λd,µ91

can be in general. What is more, the bound in Lemma 1 is essentially tight:92

Theorem 3. For any ε > 0 there exist f ∈ L∞(X ) such that93

∥f −Πd,µf∥∞ ≥ (Λd,µ − 1− ε)E∞(f) .

For the proof, see Appendix C.1. Because of the last result, we expect that any bound on E∞(θ̂n,OLS, f)94

where θ̂n is estimated from data will involve Λd,µE∞(f). Our main result of this section is indeed of95

this form. To state the result, let (φi)1≤i≤d be the orthonormal basis in L2(µ) of Fd given by the96

Gram-Schmidt procedure on the original features. We call φd(x) = (φ1(x), . . . , φd(x))
⊤ and define97

φd,2 = supx∈X ∥φd(x)∥2.98

Theorem 4. Let X be finite. Let Assumptions 1 and 2 hold. Then, for any n positive integer and real99

0 < δ ≤ 1/3 such that n ≥ 20φ2
d,2 log(d/δ), letting θ̂n,OLS be the parameter vector returned by OLS,100

with probability at least 1− 3δ,101

E∞(θ̂n,OLS, f) ≤ (1 + Λd,µ)E∞(f) + 3(σ + Λd,µE∞(f))φd,2

√
log(|X |/δ)

n

+
poly(d, φd,2,Λd,µE∞(f))

n
.
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The first quantity in the bound is the same as in Eq. (2) and this is the quantity that accounts for the102

gap between Πd,µf and f . The other terms bound the finite sample error. We gave the result for X103

finite only for simplicity. Indeed, the result can be easily extended by means of a simple covering104

argument. For example, if X = [−1, 1] and the features are Lipschitz continuous with constant Lφ,105

we can achieve uniform error over X by making a ε/Lφ−covering of X . In this way, the bound106

increases just by a factor ∝ log(Lφ/ε). Another possibility, which sometimes can lead to tighter107

results, is to cover {φ(x) : x ∈ X} ⊂ Rd.108

In addition to Λd,µ, another constant that depends on the feature map is φd,2. As it turns out, this109

value “hides” the dimension d. In particular, we show that regardless of the feature map, φd,2 ≥
√
d110

(see Proposition 19 in the appendix).111

The terms and their scaling with the relevant quantities are as expected. We have already discussed112

the first term and argued that it cannot be significantly improved for OLS. The second (and the lower113

order third) term accounts for the sampling errors. In particular, the effect of the noise is shown114

through the term involving σ. The next term, which also involves the Lebesgue constant and E∞(f)115

accounts for the random design sampling error.116

Below we show that when an a priori upper bound ε on E∞(f) is available (as can be the case in117

certain numerical applications when the target function belongs to some known class of functions,118

such as a smoothness class), we can obtain an empirical bound that has the potential to significantly119

reduce the terms of the bound shown in the last result.120

A uniform, semi-empirical bound Define µn = 1
n

∑n
t=1 δxt to be the empirical measure underly-121

ing the inputs (x1, . . . , xn). We are interested in bounding the uniform error of the OLS estimate via122

empirical quantities. In particular, we will use the Lebesgue constant associated with the projection123

operator Πd,µn
corresponding to µn. Because of this, we can also remove the assumption that (xt)t124

is sampled from µ; in fact, we will not need any assumptions concerning how (xt)t are selected.125

The operator Πd,µn takes the form126

Πd,µn
f(·) := φd(·)⊤(Φ⊤Φ)−1Φ⊤f f := [f(x1), . . . f(xt), . . . f(xn)]

⊤,

where Φ is the n× d matrix storing, as rows, the features corresponding to every φd(xt). As before,127

we define (φ̂i)1≤i≤d the orthonormal basis in L2(µn) of Fd. We let φ̂d(x) = (φ̂1(x), . . . , φ̂d(x))
⊤128

and define φ̂d,2 = supx∈X ∥φ̂d(x)∥2.129

Theorem 5. Let Assumption 1 hold. Then, for any fixed δ > 0, with probability at least 1− δ,

E∞(θ̂n,OLS) ≤ (1 + Λd,µn
)E∞(f) +

σφ̂d,2

√
2 log(2X/δ)√
n

.

Compared to Theorem 4, we both removed Assumption 2 and the lower-order term130

n−1poly(d, φd,2,Λd,µE∞(f)). At the same time, the Lebesgue constant Λd,µ is replaced with131

Λd,µn
, which may be smaller or larger than Λd,µ. When X is finite then Λd,µn

can be calculated in132

O(n|X |) time (it is just a matrix maximum norm).133

If choosing the points (x1, . . . , xn) is an option, one may attempt to optimize the bound. Here,134

besides the term Λd,µn
, φ̂d,2 also hides µn. In experimental optimal design, the G-optimal design is135

defined as the one that minimizes φ̂d,2 by choosing an appropriate distribution µn. Here, one of the136

main results is that for n = Ω(d) (or slightly larger), one can find µn such that φ̂d,2 = O(
√
d) and137

this is the best possible value Kiefer and Wolfowitz [1960].138

Under the assumption that µn is an optimal design, we can compare our result with Proposition 5.1
from Lattimore et al. [2020] (see equation (2) and the corresponding bound in high probability).
Rephrasing their proposition in our notation, we get, roughly that, if µ is an optimal design for φd,
then for σ = 1,

E∞(θ̂n,OLS, f) ≤ O

(
√
dE∞(f) +

√
d log(|X |/δ)

n

)
.

This result is a particular case of our Theorem 4: indeed φ̂d,2 =
√
d as we are using an optimal139

design, while it is not hard to see that Λd,µn
≤ φ̂d,2 holds without any assumptions. In this bound,140

4



Basis functions µ Λd,µ Source Note

Polynomial uniform on Ω(2d) [Quarteroni et al., 2010]
regular d-grid

Polynomials uniform Θ(d) DeVore and Lorentz [1993] φd,2 ≈ d
Fourier uniform O(log(d)) [Katznelson, 2004, p.59, Excercise 1]
Continuous B-splines uniform O(1) Huang [2003]
Wavelets uniform O(1) Chen and Christensen [2013]

Table 1: Examples of Lebesgue constants. Domain is X = [−1, 1].

for large n,
√
dE∞(f) is the dominant term. Therefore, our tighter bound with the Lebesgue constant141

achieves a better result whenever the Lebesgue constant is significantly smaller than
√
d. As an142

example, of a feature-map with a small Lebesgue constant, consider any partitioning (Xi)i of X and143

set φi to be the indicator of part Xi, i = 1, . . . , d. Then, the Lebesgue constant of φd is 1 regardless144

of the choice of µ. Note that with some extra work we can extract a more refined result from the145

proof of Proposition 5.1 when
√
d on the right-hand-side above is essentially replaced by φ̂d,2.146

3.1 The Lebesgue constant: properties and particular cases147

While as noted earlier Λd,µ ≤ φd,2 always hold, since φd,2 is never lower than
√
d, to get a better148

understanding of the Lebesgue constants associated with specific feature maps, we need to resort to149

feature-map dependent analysis. For many of the classical feature-maps, to under we have to resort of150

some feature map-dependent analysis. In the following, we enumerate few well-known/novel results151

in Table 1. As seen in the table, the range of values is quite large. Notably, polynomials with regular152

d-grids, show the worst-behavior (though this is somewhat unusual since here for every d one uses153

a different measure). Yet, polynomials with the uniform measure still exhibit quite big Lebesgue154

constants. Perhaps surprisingly, when switching to Fourier series, the Lebesgue constant decreases to155

O(log d). As such, if the convergence of a Fourier series to the target function is fast enough, there156

is little to no incentive to go beyond the L2-projections, or least-squares. It is interesting to note157

that some researchers have empirically found the Fourier series as a good “general” basis to be used158

in reinforcement learning [Konidaris et al., 2011]. This raises the hypothesis that this is primarily159

due to the reasonable error extrapolation properties of Fourier series, as attested by its relatively160

slow-growing Lebesgue constant. Finally, we mention that perhaps unsurprisingly localized basis161

functions such as wavelets and B-splines have Lebesgue constants that are constant independently of162

the number of basis functions used. As such, when uniform approximation is important, it seems that163

there are good reasons to prefer these systems. We speculate that tile-coding, which is itself localized164

and which is quite popular in reinforcement learning also shares the good extrapolation properties of165

these localized systems of basis functions.166

One weakness of the above results is that they are dependent on the choice of the sampling distribution167

µ. The following result shows that the Lebesgue constant changes gradually as one moves from one168

distribution to another, provided that the overlap between the two distributions is well-controlled:169

Proposition 6. Let µ, ν be two probability distributions on the discrete set X such that for all170

x ∈ X , C ≥ µ(x)
ν(x) ≥ c > 0. Then, Λd,µ ≤ C

c Λd,ν .171

4 Regularized estimators172

The previous Theorem 3 shows that, whatever the feature map, if we use the OLS estimator, the error173

is forced to scale with the misspecification multiplied by the Lebesgue constant. This is not a matter174

of overfitting, as the bound holds for infinite data; still, the problem is related to the LS solution175

becoming "too big" for some choices of f . Therefore, an idea would be to enforce a regularization on176

the LS loss, to limit the magnitude of the estimated function. In the next theorem, we show that the177

standard Ridge Regression approach is ineffective, even when knowing the orthonormal basis φd.178
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Theorem 7. Let θ̂n,RIDGE the output of λ−ridge regression. For any feature map179

φd(·) : X → Rd there is f ∈ L∞(X ) such that, for infinite data E∞(θ̂∞,RIDGE) =180

Ω
(
max

{
(Λd,µ − 2λ)E∞(f), λ

λ+1

})
.181

This result tells that the Ridge regularization is ineffective: if we take λ ≈ Λd,µ/2 the second term182

is close to one (we do not go to zero even for E∞(f) → 0), if we do not, we get the same lower183

bound of OLS. Crucially, this phenomenon persists even in the infinite data regime, indicating that184

it is not merely a sample size issue, but a geometric defect of the projection operator itself. Other185

regularization techniques like Cross-Validation and Early Stopping [Ghojogh and Crowley, 2019],186

that are designed for dealing with overfitting, cannot overcome this result, as they aim at minimizing187

the test error MSE, which is achieved by OLS for infinite data.188

Let us dig deeper into the reason behind the failure of ridge regression. The proof of Theorem 7,189

builds on the fact that the corresponding operator ΠRidge
d,µ can be written in the following form190

ΠRidge
d,µ f(x) =

d∑
i=1

αφi(x)

∫
X
φi(z)f(z) dµ(z) α =

1

1 + λ
. (3)

In fact, this is not a projection operator. Indeed, this does to corresponds to the identity when applied191

over Fd. F.e. taking f(·) = φ1(·), we get φ1(x) − ΠRidge
d,µ φ1(x) =

λ
1+λφ1(x). Indeed, in order to192

scale with E∞(f) we have to ensure that any function in Fd is kept fixed by the operator associated193

to our estimator for θ. Still, keeping α = 1, that means λ = 0 means going back to OLS.194

Extending the feature map Let us assume to add one more feature to φd(·), which we now call195

φd+1(·). Indeed, regardless of the nature of the feature that we add, E∞(f) can only decrease, as we196

are taking the infimum over a larger set. Intuition, together with the results from Section 3.1, would197

suggest that the corresponding Lebesgue constant, that passes from Λd,µ → Λd+1,µ could only get198

bigger. Surprisingly, this is not the case: there are examples of feature maps such that adding one199

feature may correspond to the Lebesgue constant getting smaller.200

To formalize this idea, let us assume to expand the original feature map with D−d different functions,201

for some integer D > d, so that the full feature map can be written as φD(·) := [φd(·),φ′
D−d(·)].202

Even if the added features φ′
D−d(·) can be arbitrary, we argue that in many real problems there is a203

way to select them in a reasonable way. For example, in all the examples mentioned in Section 3.1204

(Fourier features, polynomials, splines...) the sequence considered can be easily extended up to205

infinity by enlarging the maximum degree. We call, as before, φD(·) the feature map that we obtain206

from the Gram-Schmidt procedure on the basis φD(·) with measure µ(·). We consider the operator207

associated to weighted ridge regression over this extended basis, which generalizes Eq. (3). This208

writes, for any sequence of D weights λi in [0,∞) as:209

ΠRidge
α,µ f(x) :=

D∑
i=1

αiφi(x)

∫
X
φi(z)f(z) dµ(z). αi =

1

1 + λi
. (4)

In fact, it shall be proved that this operator is the minimizer of the weighted Ridge loss, when adding a210

penalization λi on each component φi(x). Not every value for the sequence α is meaningful: in fact,211

the original components i ≤ d must not be penalized. Moreover, as the ridge penalization of each212

component ranges in [0,+∞), the corresponding αi ∈ (0, 1]. These two constrains are formalized in213

the following set:214

AD
d := {α ∈ [0, 1]D : ∀i ≤ d, αi = 1}, (5)

which we call the set of attenuation parameters.215

4.1 Weighted ridge estimator and the Oracle Operator216

Each of there operators ΠRidge
α,µ , as long as α ∈ AD

d , maintains every element of Fd (the span of the217

original feature map φd(·)) as fixed point. We call Λα,µ the Lebesgue constant of the corresponding218

operator. The following result holds, generalizing Lebesgue’s Lemma.219
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Proposition 8. Let α ∈ AD
d (equation (5)) and ΠRidge

α,µ be defined according to equation (4). Then,

∥f(·)−ΠRidge
α,µ f(·)∥∞ ≤ (1 + Λα,µ)E∞(f).

Crucial for the proof of Proposition 8 is the definition of AD
d , ensuring that the attenuation factor αi

is one for i ≤ d, so that the projection on the original features is maintained exactly as it is. This
ensures that the original features are not penalized by the Ridge regularization. Under our point
of view, to minimize the expansion factor corresponds to using the value α ∈ AD

d which has the
minimal Lebesgue constant. We call this value ORACLE:

αOracle
µ := argmin

α∈AD
d

Λα,µ ΛOracle
µ := min

α∈AD
d

Λα,µ.

Unfortunately, αOracle
µ is unknown to the learner, as it depends on the unknown distribution µ. Our220

questions for the rest of this section are the following:221

• Q1 Can we design a finite sample estimator that, for fixed α ∈ AD
d , asymptotically, scales222

as Λα,µ?223

• Q2 Can we design a finite sample estimator that, asymptotically, scales as ΛOracle
µ ?224

Q1 To answer both the previous questions, we start by generalizing Theorem 5 to the case of225

regularization with the desired parameter α. Indeed, even being µ unknown, we can define an226

empirical counterpart of the operator defined in Eq. (4) by means of the empirical measure µn(·). In227

fact, recalling that φ̂D(·) is the feature map obtained by orthogonalizing φD(·) w.r.t. µn(·), we have228

ΠRidge
α,µn

f(·) :=
D∑
i=1

αiφ̂i(x)
1

n

n∑
t=1

φ̂i(xt)f(xt). (6)

This operator 1) takes as argument only the evaluations of f(·) at xt and 2) Outputs a linear com-229

bination of the features φ̂i(x). Thanks to the first point, we can estimate ΠRidge
α,µnf(·) by our noisy230

samples by replacing f(xt) with yt. Thanks to the second one, there exists an estimator θ̂ such231

that the result of the operator is written as φD(·)⊤θ̂. Calling Rn the triangular matrix such that232

φD(·)⊤ = φ̂D(·)⊤Rn (the matrix corresponding to Grham Scmhidt procedure), we call233

θ̂n,α := R−1
n Iα

1

n

n∑
t=1

φ̂d(xt)yt, (7)

where Iα = diag(α) takes into account the regularization, we can prove the following result.234

Theorem 9. Let assumption 1 hold. Then, for any δ > 0, with probability 1− δ,

E∞(θ̂n,α) ≤ (1 + Λα,µn
)E∞(f) +

σφ̂2,D

√
2 log(2X/δ)√
n

.

Therefore, our estimator θ̂n,α is able to scale with Λα,µn . To answer question Q1 completely, we235

just need to show that, for large enough n, we can replace the Lebesgue constant of µn with the one236

of µ. This is done in the following proposition.237

Proposition 10. Under assumption 2 we have, with probability 1 − δ for every α ∈238

AD
d at the same time, |φ̂D,2 − φD,2| ≤ Õ(φ2

D,2

√
log(1/δ)/n), and |Λα,µn

− Λα,µ| ≤239

Õ
(√

dφ2
D,2

√
log(1/δ)

√
n

+
√
dφ3

D,2 log(1/δ)

n

)
.1240

1The statement of this theorem is slightly different from the one in the main paper of the submission, as we
have made the orders of magnitude more precise.
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Figure 1: Comparison between the OLS estimator and the BWR estimator using polynomial features
on [−1, 1], with a basis of length d = 10 (left) and d = 15 (right). Even if the true function is
bounded, OLS suffers from large oscillations near the boundaries due to the high Lebesgue constant.
In contrast, BWR achieves a much more uniform approximation error across the domain by effectively
controlling the amplification effect.

Q2 For this more challenging result, we have to optimize the value of α in order to converge to the241

one of the oracle, even not knowing the true distribution µ(·). Our strategy, also for this point, is to242

work with we can compute: the operator ΠRidge
α,µn (equation (6)) and its Lebesgue constant Λα,µn

. One243

observation is key for this goal: the Lebesgue constant is convex in α.244

Proposition 11. The function J : AD
d → (0,+∞) given by J(α) := Λα,µn

is convex in α.245

This result allows us to provably arrive to one minimizer of the Lebesgue constant in a finite number246

of iteration. The idea is what follows: we start from any α ∈ AD
d and update it iteratively with the247

sub-Gradient method until convergence. This algorithm is well-known Boyd et al. [2003], but, for248

completeness, we include it; see Algorithm 1 in appendix D.4.249

Theorem 12. Fix ϵ > 0. Algorithm 1, after a number of iterations I = Õ(ϵ−2φ̂2
2,D(D − d)) outputs250

α(I) ∈ AD
d such that J(α(I)) ≤ infα∈AD

d
J(α) + ϵ.251

By definition of J(·), the former result entails that α(I) is close to be a minimizer of Λα,µn
. To252

finally answer Q2, we define the following estimator, which corresponds to equation (7) for α(I):253

θ̂n,BWR := R−1
n Iα(I)

1

n

n∑
t=1

φ̂D(xt)yt. (8)

The estimator is called BWR, which stands for "Best Weighted Regularizer". We close this section254

with its performance guarantee.255

Theorem 13. Let Assumptions 1 and 2 hold and fix δ > 0. Then, with probability 1− δ,

E∞(θ̂n,BWR) ≤ (1 + ΛOracle
µ )E∞(f) + Õ

(
φ2,D

√
D log(|X |/δ)
√
n

+
φ2
2,D log(|X |/δ)

n

)
.

This oracle inequality answer also Q2 in a positive way: our estimator is asymptotically able to256

compete with the Oracle Lebesgue constant. We close this paper with a case study of wide interest257

where this property allows θ̂n,BWR to get a much better result than the one of OLS.258

5 Case study: polynomial basis259

The method introduced in the previous section aims at reducing the amplification of the misspecifica-260

tion error by controlling the Lebesgue constant. While it applies broadly, its impact is best illustrated261

in settings where standard estimators suffer from poor uniform behavior. One such setting is the262
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classical case where the feature map φd consists of the first d monomials {1, x, x2, . . . , xd−1} over a263

compact interval. We consider the scenario where X = [−1, 1] and the data-generating distribution µ264

is the uniform distribution on this interval. Even in this most favorable case, the Lebesgue constant265

associated with the polynomial basis grows linearly with the degree: Λd,µ ≈ d. This leads to a266

worst-case uniform error for the OLS estimator that scales as O(d · E∞(f)), which can be arbitrarily267

large even when the misspecification bias E∞(f) is small.268

In contrast, the BWR estimator described at the end in Section 4 augments the feature space with269

additional monomials and optimizes an attenuation vector to minimize the empirical Lebesgue270

constant. The result is a projection operator that preserves the behavior of the original features while271

drastically reducing the amplification of the uniform error. Theoretically, this allows reducing the272

amplification factor from O(d) down to O(1), as the following theorem shows.273

Theorem 14. Let µ(·) = U([−1, 1]). There is a constant C independent of d such that, for D = 2d274

and φd(x) = [1, . . . xd−1], φD(x) = [1, . . . , x2d−1], we have ΛOracle
µ ≤ C.275

This improvement is evident in the numerical simulation shown in Fig. 1, where we compare the OLS276

estimator to the BWR estimator on synthetic data. While OLS exhibits large oscillations near the277

boundary of the interval—a manifestation of the classical Runge phenomenon—BWR remains stable278

across the domain and achieves significantly smaller uniform error. Despite both estimators using279

the same base features, the control of the Lebesgue constant yields a qualitative and quantitative280

advantage for BWR.281

The above simulations visually demonstrate how the amplification factor is exacerbated by increasing282

d. We complement them with an asymptotic result that shows how heavy this factor is, even for283

a function such that E∞(f)
d→ 0. In fact, the exist a bounded function that can be uniformly284

approximated with polynomial features but such that the OLS estimator diverges with uniform error285

roughly of order Ω(d).286

Proposition 15. Fix γ > 0. There is a function f : [−1, 1]→ R such that, E∞(f)
d→ 0 and under

assumptions 1 and 2 for µ = U([−1, 1]), with probability one,

lim
d→∞

lim
n→∞

∥f(·)−φd(·)⊤θ̂n,BWR∥∞ = 0 lim
n→∞

∥f(·)−φd(·)⊤θ̂n,OLS∥∞ ≳ d1−γ .

6 Related works287

The problem we deal in this paper, while motivated by Online Learning applications has roots in288

several different fields. Not just Mathematical Analysis and Fourier Series, but also Econometrics289

and Online Learning. Here, we give a short overview of the main papers, leaving an extended version290

for the appendix A.291

In mathematical analysis the problem of projecting onto a linear subspace of L∞(X ) in a way that292

minimizes the uniform error have always been of great interest. Several results about orthogonal293

polynomials Szegő [1939] or Fourier Series Katznelson [2004] approximation have this goal. More294

recently, Kobos and Lewicki [2024] proposed an approach for general feature maps. Passing to295

the case when an unknown function is estimated via noisy samples, there is a line of research296

(Newey [1997], Belloni et al. [2015], and Li and Liao [2020]) that studies the properties of pointwise297

estimators based on LS. The latter can be naturally adapted to achieve a uniform convergence298

guarantee. A similar problem was recently studied, in a totally different context, by Online Learning299

papers (see Du et al. [2020], Lattimore et al. [2020], Maran et al. [2024], Dong and Yang [2023],300

Amortila et al. [2024]) under the name of misspecified linear function approximation.301

The specific technique that we use in section 4 is inspired by an old method for regularizing Fourier302

series [de la Vallée Poussin, 1918, De La Vallée Poussin et al., 1919]. The technique he invented is303

still studied today in numerical mathematics [Németh, 2016, Themistoclakis and Van Barel, 2017,304

Occorsio and Themistoclakis, 2025].305

7 Conclusion306

We investigated the problem of uniform error control in misspecified linear regression under the307

random design setting. Our key insight is that the amplification of E∞(f) by least-squares methods308
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is governed by the Lebesgue constant, a concept from approximation theory. We showed that309

this amplification is tight and intrinsic to the projection geometry, thereby exposing a fundamental310

limitation of ordinary and ridge least-squares methods, even in the infinite data regime.311

To overcome this limitation, we introduced a novel regularization framework based on weighted312

ridge regression over extended feature sets, which preserves the desirable properties of the base313

features while attenuating the contribution of auxiliary ones. We proved that this approach allows314

us to, asymptotically for n → ∞, compete with the best possible (oracle) projection in terms of315

uniform error, and we proposed an efficient algorithm for learning such weights from data. In the316

polynomial basis case, we demonstrated a dramatic improvement: from Ω(d) amplification with OLS317

to the optimal O(1) with our method.318
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Question: Do the main claims made in the abstract and introduction accurately reflect the401

paper’s contributions and scope?402

Answer: [Yes]403
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• The answer NA means that the abstract and introduction do not include the claims406

made in the paper.407

• The abstract and/or introduction should clearly state the claims made, including the408

contributions made in the paper and important assumptions and limitations. A No or409

NA answer to this question will not be perceived well by the reviewers.410

• The claims made should match theoretical and experimental results, and reflect how411

much the results can be expected to generalize to other settings.412

• It is fine to include aspirational goals as motivation as long as it is clear that these goals413

are not attained by the paper.414

2. Limitations415

Question: Does the paper discuss the limitations of the work performed by the authors?416

Answer: [Yes]417

Justification: We discussed the limits of the paper and the future research directions in order418

to address them.419
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• The answer NA means that the paper has no limitation while the answer No means that421

the paper has limitations, but those are not discussed in the paper.422

• The authors are encouraged to create a separate "Limitations" section in their paper.423

• The paper should point out any strong assumptions and how robust the results are to424

violations of these assumptions (e.g., independence assumptions, noiseless settings,425

model well-specification, asymptotic approximations only holding locally). The authors426

should reflect on how these assumptions might be violated in practice and what the427

implications would be.428

• The authors should reflect on the scope of the claims made, e.g., if the approach was429

only tested on a few datasets or with a few runs. In general, empirical results often430

depend on implicit assumptions, which should be articulated.431

• The authors should reflect on the factors that influence the performance of the approach.432

For example, a facial recognition algorithm may perform poorly when image resolution433

is low or images are taken in low lighting. Or a speech-to-text system might not be434

used reliably to provide closed captions for online lectures because it fails to handle435

technical jargon.436

• The authors should discuss the computational efficiency of the proposed algorithms437

and how they scale with dataset size.438

• If applicable, the authors should discuss possible limitations of their approach to439

address problems of privacy and fairness.440

• While the authors might fear that complete honesty about limitations might be used by441

reviewers as grounds for rejection, a worse outcome might be that reviewers discover442

limitations that aren’t acknowledged in the paper. The authors should use their best443

judgment and recognize that individual actions in favor of transparency play an impor-444

tant role in developing norms that preserve the integrity of the community. Reviewers445

will be specifically instructed to not penalize honesty concerning limitations.446

3. Theory assumptions and proofs447

Question: For each theoretical result, does the paper provide the full set of assumptions and448

a complete (and correct) proof?449

Answer: [Yes]450
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Justification: All the statements are provided with proofs in the appendix.451

Guidelines:452

• The answer NA means that the paper does not include theoretical results.453

• All the theorems, formulas, and proofs in the paper should be numbered and cross-454

referenced.455

• All assumptions should be clearly stated or referenced in the statement of any theorems.456

• The proofs can either appear in the main paper or the supplemental material, but if457

they appear in the supplemental material, the authors are encouraged to provide a short458

proof sketch to provide intuition.459

• Inversely, any informal proof provided in the core of the paper should be complemented460

by formal proofs provided in appendix or supplemental material.461

• Theorems and Lemmas that the proof relies upon should be properly referenced.462

4. Experimental result reproducibility463

Question: Does the paper fully disclose all the information needed to reproduce the main ex-464

perimental results of the paper to the extent that it affects the main claims and/or conclusions465

of the paper (regardless of whether the code and data are provided or not)?466

Answer: [Yes]467

Justification: We include the code in the supplementary material (very simple, just one very468

short Jupyter notebook)469

Guidelines:470

• The answer NA means that the paper does not include experiments.471

• If the paper includes experiments, a No answer to this question will not be perceived472

well by the reviewers: Making the paper reproducible is important, regardless of473

whether the code and data are provided or not.474

• If the contribution is a dataset and/or model, the authors should describe the steps taken475

to make their results reproducible or verifiable.476

• Depending on the contribution, reproducibility can be accomplished in various ways.477

For example, if the contribution is a novel architecture, describing the architecture fully478

might suffice, or if the contribution is a specific model and empirical evaluation, it may479

be necessary to either make it possible for others to replicate the model with the same480

dataset, or provide access to the model. In general. releasing code and data is often481

one good way to accomplish this, but reproducibility can also be provided via detailed482

instructions for how to replicate the results, access to a hosted model (e.g., in the case483

of a large language model), releasing of a model checkpoint, or other means that are484

appropriate to the research performed.485

• While NeurIPS does not require releasing code, the conference does require all submis-486

sions to provide some reasonable avenue for reproducibility, which may depend on the487

nature of the contribution. For example488

(a) If the contribution is primarily a new algorithm, the paper should make it clear how489

to reproduce that algorithm.490

(b) If the contribution is primarily a new model architecture, the paper should describe491

the architecture clearly and fully.492

(c) If the contribution is a new model (e.g., a large language model), then there should493

either be a way to access this model for reproducing the results or a way to reproduce494

the model (e.g., with an open-source dataset or instructions for how to construct495

the dataset).496

(d) We recognize that reproducibility may be tricky in some cases, in which case497

authors are welcome to describe the particular way they provide for reproducibility.498

In the case of closed-source models, it may be that access to the model is limited in499

some way (e.g., to registered users), but it should be possible for other researchers500

to have some path to reproducing or verifying the results.501

5. Open access to data and code502

Question: Does the paper provide open access to the data and code, with sufficient instruc-503

tions to faithfully reproduce the main experimental results, as described in supplemental504

material?505
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Answer: [Yes]506
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possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not514
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• The instructions should contain the exact command and environment needed to run to517

reproduce the results. See the NeurIPS code and data submission guidelines (https:518
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.521

• The authors should provide scripts to reproduce all experimental results for the new522

proposed method and baselines. If only a subset of experiments are reproducible, they523

should state which ones are omitted from the script and why.524

• At submission time, to preserve anonymity, the authors should release anonymized525

versions (if applicable).526

• Providing as much information as possible in supplemental material (appended to the527

paper) is recommended, but including URLs to data and code is permitted.528

6. Experimental setting/details529

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-530

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the531

results?532

Answer: [Yes]533

Justification: We include the code in the supplementary material (very simple, just one very534

short Jupyter notebook)535
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• The answer NA means that the paper does not include experiments.537

• The experimental setting should be presented in the core of the paper to a level of detail538

that is necessary to appreciate the results and make sense of them.539

• The full details can be provided either with the code, in appendix, or as supplemental540

material.541

7. Experiment statistical significance542

Question: Does the paper report error bars suitably and correctly defined or other appropriate543

information about the statistical significance of the experiments?544

Answer: [NA]545

Justification: -546
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• The answer NA means that the paper does not include experiments.548
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• It should be clear whether the error bar is the standard deviation or the standard error558
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Guidelines:574
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• The conference expects that many papers will be foundational research and not tied607
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that users adhere to usage guidelines or restrictions to access the model or implementing632

safety filters.633

• Datasets that have been scraped from the Internet could pose safety risks. The authors634

should describe how they avoided releasing unsafe images.635

• We recognize that providing effective safeguards is challenging, and many papers do636

not require this, but we encourage authors to take this into account and make a best637

faith effort.638

12. Licenses for existing assets639

Question: Are the creators or original owners of assets (e.g., code, data, models), used in640

the paper, properly credited and are the license and terms of use explicitly mentioned and641

properly respected?642

Answer: [NA]643

Justification: —644

Guidelines:645

• The answer NA means that the paper does not use existing assets.646

• The authors should cite the original paper that produced the code package or dataset.647

• The authors should state which version of the asset is used and, if possible, include a648

URL.649

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.650

• For scraped data from a particular source (e.g., website), the copyright and terms of651

service of that source should be provided.652

• If assets are released, the license, copyright information, and terms of use in the package653

should be provided. For popular datasets, paperswithcode.com/datasets has654

curated licenses for some datasets. Their licensing guide can help determine the license655

of a dataset.656

• For existing datasets that are re-packaged, both the original license and the license of657

the derived asset (if it has changed) should be provided.658
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• If this information is not available online, the authors are encouraged to reach out to659

the asset’s creators.660

13. New assets661

Question: Are new assets introduced in the paper well documented and is the documentation662

provided alongside the assets?663

Answer: [NA]664

Justification: —665

Guidelines:666

• The answer NA means that the paper does not release new assets.667

• Researchers should communicate the details of the dataset/code/model as part of their668

submissions via structured templates. This includes details about training, license,669

limitations, etc.670

• The paper should discuss whether and how consent was obtained from people whose671

asset is used.672

• At submission time, remember to anonymize your assets (if applicable). You can either673

create an anonymized URL or include an anonymized zip file.674

14. Crowdsourcing and research with human subjects675

Question: For crowdsourcing experiments and research with human subjects, does the paper676

include the full text of instructions given to participants and screenshots, if applicable, as677

well as details about compensation (if any)?678

Answer: [NA]679

Justification: —680

Guidelines:681

• The answer NA means that the paper does not involve crowdsourcing nor research with682

human subjects.683

• Including this information in the supplemental material is fine, but if the main contribu-684

tion of the paper involves human subjects, then as much detail as possible should be685

included in the main paper.686

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,687

or other labor should be paid at least the minimum wage in the country of the data688

collector.689

15. Institutional review board (IRB) approvals or equivalent for research with human690

subjects691

Question: Does the paper describe potential risks incurred by study participants, whether692

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)693

approvals (or an equivalent approval/review based on the requirements of your country or694

institution) were obtained?695

Answer: [NA]696

Justification: —697

Guidelines:698

• The answer NA means that the paper does not involve crowdsourcing nor research with699

human subjects.700

• Depending on the country in which research is conducted, IRB approval (or equivalent)701

may be required for any human subjects research. If you obtained IRB approval, you702

should clearly state this in the paper.703

• We recognize that the procedures for this may vary significantly between institutions704

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the705

guidelines for their institution.706

• For initial submissions, do not include any information that would break anonymity (if707

applicable), such as the institution conducting the review.708

16. Declaration of LLM usage709
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Question: Does the paper describe the usage of LLMs if it is an important, original, or710

non-standard component of the core methods in this research? Note that if the LLM is used711

only for writing, editing, or formatting purposes and does not impact the core methodology,712

scientific rigorousness, or originality of the research, declaration is not required.713

Answer: [NA]714

Justification: —715

Guidelines:716

• The answer NA means that the core method development in this research does not717

involve LLMs as any important, original, or non-standard components.718

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/719

LLM) for what should or should not be described.720
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A Related Works721

Classical approximation theory The idea of approximating a class of functions with a family of722

vector spaces in a uniform sense has always been an important topic in mathematical analysis. On723

the more general level, this theory takes the name of Kolmogorov’s n-width (Kolmogoroff [1936];724

see Lorentz [1966] and Pinkus [2012] for a more modern formalization). The idea, central to this725

paper, of finding a linear operator that well approximates the non-linear L∞ projection operator has726

also been the main topic of multiple line of research. In particular, many result about orthogonal727

polynomials Szegő [1939] or Fourier Series Katznelson [2004] approximation have this goal. More728

recently, Kobos and Lewicki [2024] studied the problem for general feature map, investigating the729

class of linear operators that achieve the lower bound.730

Asymptotic pointwise and uniform convergence of LS series in the econometric literature In the731

econometric literature, the series least squares (LS) estimators have been analyzed primarily through732

an asymptotic lens: with the sample size n→ +∞ and the basis dimension d→ +∞, one studies733

asymptotic Gaussianity of the estimator of the function in each single point. Newey [1997] provided734

seminal results for this literature, which were then improved by Belloni et al. [2015], the first to use735

the Lebesgue constant in this field, and by Li and Liao [2020], who generalize the result to time736

series data. All these contributions, however, remain asymptotic: they provide limiting distributions737

or rates without explicit high–probability bounds, and—crucially—they do not propose algorithmic738

modifications capable of reducing the amplification factor induced by the Lebesgue constant.739

Uniform bounds for linear regression in the context of Online Learning As anticipated in the740

introduction, the problem of getting L∞ bounds for regression over a domain naturally arises in the741

context of Online Learning with linear function approximation; bandits and RL in particular. Du et al.742

[2020] established the first
√
d amplification lower bound in some specific cases, which was then743

refined by Lattimore et al. [2020], who also derives the corresponding an upper bound of
√
d , using744

an optimal design argument. In fact, it can be proved that the factor
√
d is precisely the maximal745

Lebesgue constant of any feature map for µ that is the optimal design. These lower bound hold746

for a worst-case feature map, but allowing the learner to choose the data distribution. Following747

these works, many papers tried to understand how this amplification factor could be reduced. Maran748

et al. [2024] shows how to remove it in case of a locally linear feature map; Dong and Yang [2023]749

improves the
√
d amplification in case of sparsity. Perhaps, the most similar paper to our one is750

Amortila et al. [2024], which proposes a method to mitigate the effect of misspecification w.r.t. the751

least-squares fitting. Still, the latter focuses on a different objective, i.e. the error under covariate752

shift (measuring the MSE under a distribution ν ̸= µ), and scales with the density ratio ν(·)/µ(·).753

Generalizing to the uniform error would mean to take ν(·) as a Dirac’s delta, which would make this754

bound vacuous.755

De la Valleè Poussin approach The to reduce the Lebesgue constant by adding auxiliary features is756

rooted in a concept that dates back in the history of mathematics to Baron de la Vallée Poussin [de la757

Vallée Poussin, 1918, De La Vallée Poussin et al., 1919]. The technique he invented is still studied758

today in numerical mathematics [Németh, 2016, Themistoclakis and Van Barel, 2017, Occorsio and759

Themistoclakis, 2025].760

Finite-sample bounds for ridge regression Hsu et al. [2014] gives finite-sample bounds for ridge761

regression under random design. The results, when translated into our setting, bound the error between762

fθ̂n and f̄ where f̄ := g ◦ φ and the bound is expressed in terms of f̄ − Πµ,df . Here for u ∈ Rd,763

g(u) =
∫
f(x)µ(dx|u) where µ(dx|u) is the disintegration of µ with respect to the push-forward764

of µ under φ. In particular, for S ⊂ X , u ∈ Rd, µ(S|u) =
∫
I(x ∈ S, φ(x) = u)µ(dx). In the765

special case when φ is injective, f̄ = f . Just like in the result that can be extracted from the work of766

Lattimore et al. [2020], the bounds in this work depend on φd,2 (or φ̂d,2) and scale similarly.767

B General-interest results768

We start from the usual Bernstein’s inequality Boucheron et al. [2003], here written for variables that769

are bounded in [−B,B] and in the "high probability" form.770

Theorem 16. Let {Xt}nt=1 be a sequence of zero-mean random variable bounded in [−B,B]. Let771

σ2 :=
∑n

t=1 Var(Xt). Then, with probability at least 1− δ772
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∣∣∣∣∣
n∑

t=1

Xt

∣∣∣∣∣ ≤√2σ2 log(2/δ) +
2B

3
log(2/δ).

Lemma 2. Let φd be an orthonormal feature map w.r.t. ρ.

Ex∼ρ

[
φd(x)φd(x)

⊤] = Id,

where Id is the d−dimensional identity matrix.773

Proof. In this proof, let us denote with ei, for i = 1, . . . d, the standard basis of Rd. By definition of774

outer product between two vectors we get what follows.775

Ex∼ρ

[
φd(x)φd(x)

⊤] = Ex∼ρ

 d∑
i=1

d∑
j=1

φi(x)φj(x)eie
⊤
j


=

d∑
i=1

d∑
j=1

Ex∼ρ

[
φi(x)φj(x)

]
eie

⊤
j

=

d∑
i=1

d∑
j=1

δijeie
⊤
j = Id.

This completes the proof.776

Lemma 3. Let {vt}kt=1 be a sequence of independent d−dimensional random vectors such that

E[vtv⊤t ] = σId ∥vt∥22 ≤ B.

Let V :=
∑k

t=1 vtv
⊤
t . Then,777

1. W.p. at least 1− δ

λmin(V ) ≥

(
1−

√
5B log(d/δ)

kσ2

)
kσ2,

if
(
1−

√
5B log(d/δ)

kσ2

)
≤ 1/2.778

2. W.p. at least 1− δ779

λmax(V ) ≤

(
1 +

√
2B log(d/δ)

kσ2

)
kσ2,

if
(
1 +

√
2B log(d/δ)

kσ2

)
≤ 1.780

Proof. Note that, as λmax(vtv
⊤
t ) = ∥vt∥2s ≤ B, we can then apply Theorem 5.1.1 from Tropp et al.781

[2015] taking782

µmin = µmax = kσ2 L = B,

which ensures that783

∀ε ∈ (0, 1), P
(
λmin(V ) ≤ (1− ε)kσ2

)
≤ d

(
e−ε

(1− ε)1−ε

)kσ2/B

,

while784
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∀ε > 0, P
(
λmax(V ) ≥ (1 + ε)kσ2

)
≤ d

(
eε

(1 + ε)1+ε

)kσ2/B

.

The thesis is going to follow by just simplifying the previous expressions. We recall from elementary785

Taylor expansions that786

ε < 0.5 =⇒ −ε− 4ε2/5 ≤ log(1− ε) ≤ −ε− ε2

2
.

and787

ε < 1 =⇒ ε− ε2

2
≤ log(1 + ε) ≤ ε− ε2

4
.

Therefore, we have, for ε < 0.5788

e−ε

(1− ε)1−ε
= exp(−ε− (1− ε) log(1− ε))

≤ exp
(
−ε− (1− ε)(−ε− 4ε2/5)

)
= exp

(
−ε+ ε− ε2/5 +O(ε3))

)
≈ e−ε2/5.

On the other side, for ε ≤ 1,789

eε

(1 + ε)1+ε
= exp(ε− (1 + ε) log(1 + ε))

≤ exp(ε− (1 + ε)(ε− ε2/2))

= exp(−ε2/2 +O(ε3)) ≈ e−ε2/2.

This tells us that790

∀ε ∈ (0, 1/2), P
(
λmin(V ) ≤ (1− ε)kσ2

)
≤ de−kσ2ε2/(5B),

and791

∀ε ∈ (0, 1), P
(
λmax(V ) ≥ (1 + ε)kσ2

)
≤ de−kσ2ε2/(2B).

We can reformulate the previous results in the high-probability notation. Indeed, taking δ =792

de−kσ2ε2/(5B), we get793

ε =

√
5B log(d/δ)

kσ2
,

which entails that794

√
5B log(d/δ)

kσ2
≤ 1/2 =⇒ P

(
λmin(V ) ≤

(
1−

√
5B log(d/δ)

kσ2

)
kσ2

)
≤ δ.

Doing the same for the other result, we get795

√
2B log(d/δ)

kσ2
≤ 1 =⇒ P

(
λmax(V ) ≥

(
1 +

√
2B log(d/δ)

kσ2

)
kσ2

)
≤ δ,
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which completes the proof.796

797

Proposition 17. The Lebesgue constant satisfies Λd,µ = supx∈X
∫
X

∣∣∣∑d
i=1 φi(z)φi(x)

∣∣∣ dµ(z).798

Proof. See Cheney [1966], chapter 4.799

C Proofs from section 3800

C.1 Lower bound for LS801

Recall that F = L2(µ) ∩ L∞(X ). Let Π∞f = argming∈Fd
∥f − g∥∞ with ties broken arbitrarily.802

Note that Theorem 1.1 of Chapter 3 in the book of DeVore and Lorentz [1993] guarantees that at803

least one minimizer exists. (As discussed there, uniqueness may or may not hold.)804

Lemma 4. We have805

sup
f∈F

∥Πd,µf − f∥∞
E∞(f)

≥ Λd,µ − 1 .

Proof. By definition of Lebesgue constant, for every ε > 0 there is a function g such that

∥Πd,µg∥∞ ≥ (Λd,µ − ε)∥g∥∞.

Take f = Π∞g − g. We will use twice that for any h ∈ F , ∥h|_∞ = ∥0 − h∥∞ ≥ infu∈Fd
∥u −806

h∥∞ = ∥Π∞h− h∥∞. Now,807

∥Πd,µf − f∥∞ = ∥Πd,µ(Π∞g − g)−Π∞g + g∥∞
= ∥Π∞g −Πd,µg −Π∞g + g∥∞
= ∥ −Πd,µg + g∥∞
≥ ∥Πd,µg∥∞ − ∥g∥∞
≥ (Λd,µ − 1− ε)∥g∥∞
≥ (Λd,µ − 1− ε)∥Π∞g − g∥∞
= (Λd,µ − 1− ε)∥f∥∞
≥ (Λd,µ − 1− ε)∥Π∞f − f∥∞.

The result follows by letting ε→ 0.808

Theorem 3. For any ε > 0 there exist f ∈ L∞(X ) such that809

∥f −Πd,µf∥∞ ≥ (Λd,µ − 1− ε)E∞(f) .

Proof. The result is immediate from Lemma 4.810

C.2 Towards the proof of theorem 4811

Lemma 5. Fix δ > 0, and n ≥ 20φ2
d,2 log(d/δ). Let

Vn =

n∑
t=1

φd(xt)φd(xt)
⊤.

Then, λmin(Vn) ≥ n/2.812

Proof. The matrices we are summing correspond to φd(xt)φd(xt)
⊤ each one being semi-positive813

definite with the biggest eigenvalue bounded by φ2
d,2 almost surely (indeed, v⊤φd(xt)φd(xt)

⊤v is814

maximized for v parallel to φd(xt) and produces ∥φd(xt)∥22). Moreover, as we have seen in lemma815

2,816
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E

[
n∑

t=1

φd(xt)φd(xt)
⊤

]
=

n∑
t=1

E
[
φd(xt)φd(xt)

⊤] = nId.

These two ingredients allow us to apply lemma 3 part one, which ensures that with probability at
least 1− δ

λmin(Vn) ≥

1−

√
5φ2

d,2 log(d/δ)

n

n,

if
(
1−

√
5φ2

d,2 log(d/δ)

n

)
≤ 1/2. Therefore, taking n ≥ 20φ2

d,2 log(d/δ), we get λmin(Vn) ≥ n/2,817

which completes the proof.818

819

Lemma 6. Let ζd,µ(·) := f(·)−Πd,µf(·). With probability at least 1− δ,∣∣∣∣∣φd(z)
⊤V −1

n

n∑
t=1

φd(xt)ζd,µ(xt)

∣∣∣∣∣ ≤ 2Λd,µE∞(f)φd,2√
n

√
log(1/δ),

plus a lower-order term depending on n−1 which takes the form of820

Õ
(
n−1d1/2φ2

d,2Λd,µE∞(f) + n−3/2dφ3
d,2Λd,µE∞(f)

)
.821

Proof. We start rearranging the equation as follows822 ∣∣∣∣∣φd(z)
⊤V −1

n

n∑
t=1

φd(xt)ζd,µ(xt)

∣∣∣∣∣ =
∣∣∣∣∣φd(z)

⊤
(
1

n
Vn

)−1
1

n

n∑
t=1

φd(xt)ζd,µ(xt)

∣∣∣∣∣
=

∣∣∣∣∣φd(z)
⊤ (Id +∆n)

1

n

n∑
t=1

φd(xt)ζd,µ(xt)

∣∣∣∣∣
≤

∣∣∣∣∣φd(z)
⊤ 1

n

n∑
t=1

φd(xt)ζd,µ(xt)

∣∣∣∣∣
+

∣∣∣∣∣φd(z)
⊤∆n

1

n

n∑
t=1

φd(xt)ζd,µ(xt)

∣∣∣∣∣ .
For ∆n := (Vn/n)

−1 − Id. To bound both parts, we start by giving a result for823
1
n

∑n
t=1 v

⊤φd(xt)ζd,µ(xt) that holds for one fixed v ∈ Rd. Indeed,824

1. Every random variable v⊤φd(xt)ζd,µ(xt) is bounded by ∥v∥2φd,2Λd,µE∞(f) a.s.825

2. The variance of the same random variable is826

Ex∼ρ[(v
⊤φd(x)ζd,µ(x))

2] = Ex∼ρ[ζd,µ(x)
2v⊤φd(x)

⊤φd(x)v]

≤ (Λd,µE∞(f))2v⊤Ex∼ρ[φd(x)
⊤φd(x)]v

= (Λd,µE∞(f))2v⊤Idv

= (Λd,µE∞(f))2∥v∥22,

the main step following from lemma 2.827

So by Bernstein’s inequality (theorem 16),828

1

n

n∑
t=1

v⊤φd(xt)ζd,µ(xt) ≤
2Λd,µE∞(f)∥v∥2√

n

√
log(1/δ) +

2∥v∥2φd,2Λd,µE∞(f)

3n
log(1/δ). (9)
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We can use the previous equation to bound both parts. For the first, we just take v = φd(z), which
respects ∥v∥2 ≤ φd,2, in equation 9 and get∣∣∣∣∣φd(z)

⊤ 1

n

n∑
t=1

φd(xt)ζd,µ(xt)

∣∣∣∣∣ ≤ 2Λd,µE∞(f)φd,2√
n

√
log(1/δ) +

2φd,2Λd,µE∞(f)

3n
log(1/δ).

Let us now focus on the second part. Indeed,∣∣∣∣∣φd(z)
⊤∆n

1

n

n∑
t=1

φd(xt)ζd,µ(xt)

∣∣∣∣∣ ≤ φd,2∥∆n∥2

∥∥∥∥∥ 1n
n∑

t=1

φd(xt)ζd,µ(xt)

∥∥∥∥∥
2

Now, using lemma 3 as done in the proof of lemma 5, we have829

∥∆n∥2 ≤ φd,2

√
5 log(d/δ)

n
,

while for the last part we can write830

∥∥∥∥∥ 1n
n∑

t=1

φd(xt)ζd,µ(xt)

∥∥∥∥∥
2

= sup
∥v∥2=1

1

n

n∑
t=1

v⊤φd(xt)ζd,µ(xt)

≤ sup
∥v∥2∈B

1/n
d

1

n

n∑
t=1

v⊤φd(xt)ζd,µ(xt) +
φd,2Λd,µE∞(f)

n
,

where B
1/n
d is a 1/n covering of the set of vectors such that ∥v∥2 = 1. It is well-known that we can831

choose B
1/n
d so that |B1/n

d | ≈ n−d, so that, making a union bound together with equation 9, we get832

∥∥∥∥∥ 1n
n∑

t=1

φd(xt)ζd,µ(xt)

∥∥∥∥∥
2

≤ 2Λd,µE∞(f)√
n

√
d log(1/δ)+

2φd,2Λd,µE∞(f)

3n
log(1/δ)+

Λd,µE∞(f)

n
.

As a consequence,833

∣∣∣∣∣φd(z)
⊤∆n

1

n

n∑
t=1

φd(xt)ζd,µ(xt)

∣∣∣∣∣
≤ φ2

d,2

√
5 log(d/δ)

n

(
2Λd,µE∞(f)√

n

√
d log(1/δ) +

2φd,2dΛd,µE∞(f)

3n
log(1/δ) +

Λd,µE∞(f)

n

)
≤ Õ

(
n−1d1/2φ2

d,2Λd,µE∞(f) + n−3/2dφ3
d,2Λd,µE∞(f)

)
.

This completes the proof.834

C.3 Proof of theorem 4835

Theorem 4. Let X be finite. Let Assumptions 1 and 2 hold. Then, for any n positive integer and real836

0 < δ ≤ 1/3 such that n ≥ 20φ2
d,2 log(d/δ), letting θ̂n,OLS be the parameter vector returned by OLS,837

with probability at least 1− 3δ,838

E∞(θ̂n,OLS, f) ≤ (1 + Λd,µ)E∞(f) + 3(σ + Λd,µE∞(f))φd,2

√
log(|X |/δ)

n

+
poly(d, φd,2,Λd,µE∞(f))

n
.
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Proof. In this proof, as before, we call Let ζd,µ(·) := f(·)−Πd,µf(·).839

Trough this proof we call θ̂n the OLS estimator and f̂n(·) the corresponding estimated function. We840

start making the following decomposition:841

|φd(x)
⊤θ̂n − f(x)| ≤ |φd(x)

⊤θ̂n −Πd,µf(x)|+ ∥Πd,µf − f∥∞
≤ |φd(x)

⊤θ̂n −Πd,µf(x)|+ (1 + Λd,µ)E∞(f).

To bound the first part, we let θ⋆ be such that Πd,µf(·) = φd(·)⊤θ⋆. By Assumption 1, the842

samples take the form yt = φd(xt)
⊤θ⋆ + ζd,µ(xt) + ηt, where {ηt}nt=1 is a family of independent843

σ−subgaussian random variables. By definition, letting Vn =
∑n

t=1 φd(xt)φd(xt)
⊤, the LS solution844

takes the form φd(xt)
⊤θ̂n, where845

θ̂n = Vn
−1

n∑
t=1

φd(xt)yt

= Vn
−1

n∑
t=1

φd(xt)(φd(xt)
⊤θ⋆ + ηt + ζd,µ(xt))

= θ⋆ + Vn
−1

n∑
t=1

φd(xt)(ηt + ζd,µ(xt)).

Therefore, we have

|φd(x)
⊤θ̂n −Πd,µf(x)| ≤

∣∣∣∣∣φd(x)
⊤Vn

−1
n∑

t=1

φd(xt)ηt

∣∣∣∣∣︸ ︷︷ ︸
(I)

+

∣∣∣∣∣φd(x)
⊤Vn

−1
n∑

t=1

φd(xt)ζd,µ(xt)

∣∣∣∣∣︸ ︷︷ ︸
(II)

.

We are going to bound the two terms separately. First, let E := {λmin(Vn) ≥ n/2}. From lemma 5,846

under the assumptions of this theorem, we have P(E) ≥ 1− δ.847

(I) Since ηt are independent and σ−subgaussian, Lemma 5.4 and Theorem 5.3 from Lattimore848

and Szepesvári [2020] ensure that, with probability at least 1− 2δ849 ∣∣∣∣∣φd(x)
⊤Vn

−1
n∑

t=1

φd(xt)ηt

∣∣∣∣∣ ≤
√√√√2σ2

n∑
t=1

(
φd(x)

⊤Vn
−1φd(xt)

)2
log(1/δ)

=
√
2σ2∥φd(x)∥2Vn

−1 log(1/δ)

=
√
2 log(1/δ)σ∥φd(x)∥Vn

−1 .

Moreover, if event E holds,

∥φd(x)∥Vn
−1 ≤ 2∥φd(x)∥2√

n
≤

2φd,2√
n

,

so that the full term is bounded by
√
8 log(1/δ)σφd,2n

−1/2.850

(II) This term is bounded by lemma 6 which, with probability at least 1− δ gives851

∣∣∣∣∣φd(z)
⊤V −1

n

n∑
t=1

φd(xt)ζd,µ(xt)

∣∣∣∣∣ ≤ 2Λd,µE∞(f)φd,2√
n

√
log(1/δ),

plus lower-order terms of the form poly(d,φd,2,Λd,µE∞(f))

n .852
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Note that, thanks to lemma 5, event E holds with probability 1 − δ under the assumptions of this853

theorem. Moreover, imposing that both events in (I) and (II) verify, we get, with probability at least854

1− 3δ,855

|φd(x)
⊤θ̂n − f(x)|∞ ≤ (1 + Λd,µ)E∞(f) + |φd(x)

⊤θ̂n −Πd,µf(x)|

≤ (1 + Λd,µ)E∞(f) +
3(σ + Λd,µE∞(f))φd,2√

n

√
log(1/δ)

plus lower-order terms of the form poly(d,φd,2,Λd,µE∞(f))

n . This completes the proof.856

C.4 Bound scaling with the empirical lebesgue constant857

Theorem 5. Let Assumption 1 hold. Then, for any fixed δ > 0, with probability at least 1− δ,

E∞(θ̂n,OLS) ≤ (1 + Λd,µn
)E∞(f) +

σφ̂d,2

√
2 log(2X/δ)√
n

.

Proof. Let θ̂n the estimator corresponding to θ̂n,OLS in the parameterization of φ̂d(·), so that

φ̂d(·)⊤θ̂n = φd(·)⊤θ̂n,OLS =: f̂n(·).

The following decomposition holds:858

∥f(·)− f̂n(·)∥∞ ≤ ∥f(·)−Πd,µn
f(·)∥∞ + ∥Πd,µn

f(·)− f̂n(·)∥∞
≤ (1 + Λ̂d,µ)E∞(f) + ∥Πd,µn

f(·)− f̂n(·)∥∞.

Now, we focus on the second term. As done in the previous proof of theorem 4, we let θ⋆ be such859

that Πd,µn
f(·) = φ̂d(·)⊤θ⋆ and ζd,µn

(·) := f(·)− φ̂d(·)⊤θ⋆. In this way, our samples take the form860

yt = φ̂d(xt)
⊤θ⋆ + ζd,µn

(xt) + ηt.861

For any fixed x ∈ X we have862

f̂n(x) = φ̂d(x)
⊤θ̂n

= φ̂d(x)
⊤ 1

n

n∑
t=1

φ̂d(xt)yt

= φ̂d(x)
⊤ 1

n

n∑
t=1

φ̂d(xt)(φ̂d(xt)
⊤θ⋆ + ζd,µn

(xt) + ηt)

= φ̂d(x)
⊤θ⋆ + φ̂d(x)

⊤ 1

n

n∑
t=1

φ̂d(xt)ζd,µn
(xt)︸ ︷︷ ︸

(I)

+ φ̂d(x)
⊤ 1

n

n∑
t=1

φ̂d(xt)ηt︸ ︷︷ ︸
(II)

.

Here, the last passage is due to the fact that, being φ̂d(·) orthogonal w.r.t. µn(·), it follows863
1
n

∑n
t=1 φ̂d(xt)φ̂d(xt)

⊤ = Id. Now, we analyze the two terms (I) and (II) separately.864

(I) = φ̂d(x)
⊤ 1

n

n∑
t=1

φ̂d(xt)ζd,µn
(xt)

= φ̂d(x)
⊤
∫
X
φ̂d(z)ζd,µn

(z) dµn(z) = φ̂d(x)
⊤0 = 0.

In fact, by definition of orthogonal projection, ζd,µn
(·) is orthogonal in L2(µn) to the span of φ̂d(·),865

so to each of its components in particular.866
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Let us look at the second term. Since ηt are independent and σ−subgaussian, Lemma 5.4 and867

Theorem 5.3 from Lattimore and Szepesvári [2020] ensure that, with probability at least 1− 2δ868 ∣∣∣∣∣φ̂d(x)
⊤n−1

n∑
t=1

φ̂d(xt)ηt

∣∣∣∣∣ ≤
√√√√2σ2n−1

n∑
t=1

(φ̂d(x)
⊤φ̂d(xt))

2
log(1/δ)

=
√
2σ2n−1∥φ̂d(x)∥22 log(1/δ)

=
√
2 log(1/δ)σn−1/2∥φ̂d(x)∥2.

Where the second passage comes once again from the fact that 1
n

∑n
t=1 φ̂d(xt)φ̂d(xt)

⊤ = Id. This869

proves that (II) is bounded by
√
2 log(1/δ)σn−1/2φ̂2,d. Making a union bound over x ∈ X , this870

entails w.p. 1− δ,871

sup
x∈X

∣∣∣∣∣φ̂d(x)
⊤n−1

n∑
t=1

φ̂d(xt)ηt

∣∣∣∣∣ ≤√2 log(|X |/δ)σn−1/2φ̂2,d.

We have proved that872

E∞(θ̂n,OLS) = ∥f(·)− f̂n(·)∥∞
≤ (1 + Λ̂d,µ)E∞(f) + ∥Πd,µn

f(·)− f̂n(·)∥∞
≤ (1 + Λ̂d,µ)E∞(f) +

√
2 log(|X |/δ)σn−1/2φ̂2,d.

873

C.5 Proofs from section 3.1874

Proposition 18. The Lebesgue constant is bounded by Λd,µ ≤ φd,2.875

Proof. Let f ∈ L∞(X ) with ∥f∥∞ = 1. We have, for any x ∈ X ,876

|Πd,µf(x)| =

∣∣∣∣∣
d∑

i=1

⟨f, φi⟩φi(x)

∣∣∣∣∣
≤

√√√√ d∑
i=1

⟨f, φi⟩2
d∑

i=1

φi(x)
2

≤
√
∥f∥2µ∥φi(x)∥22

≤ ∥f∥∞
√
∥φi(x)∥22 ≤ φd,2,

the last passage coming from the fact that as ρ is a probability measure, ∥f∥µ ≤ ∥f∥∞. The thesis877

follows taking the supremum on f, x.878

Proposition 19. Let φd : X → Rd be any feature map, and ρ a probability measure. Then,

φ2 ≥
√
d.
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Proof. The key for this result is to note that, being ρ a probability measure, φ2
d,2 ≥ Ex∼ρ

[
∥φd(x)∥22

]
879

(the supremum of a function upper bounds its integral on any probability measure). Then,880

φd,2 ≥
√
Ex∼ρ [∥φd(x)∥22]

=
√
Ex∼ρ [φd(x)

⊤φd(x)]

=
√
Ex∼ρ [Tr(φd(x)

⊤φd(x))]

=
√
Ex∼ρ [Tr(φd(x)φd(x)

⊤)]

=
√

Tr(Ex∼ρ [φd(x)φd(x)
⊤])

∗
=
√

Tr(Id) =
√
d.

Where the passage (∗) comes from lemma 2.881

Proposition 20. Let X = [k] and φi(j) = Xij , with all the Xij being independent bounded
zero-mean unit variance random variables. Then, if d = O(

√
k), the feature map φd, satisfies

Λd,µ = O(
√
d log(k/δ))

with probability at least 1− δ. Moreover, E[Λd,µ] ≥ Ω(
√
d).882

Proof. By convenience, we call Φ ∈ Rk×d the matrix having, as columns, the features of φd.883

Precisely, the i−th column of Φ corresponds to φi. It is well-known that, in a finite dimensional884

space the orthogonal projection operator writes as885

Πd,µ := Φ(Φ⊤Φ)−1Φ⊤.

We call Φm· the m−th row of Φ which, by assumption, is a random vector of independent entries886

bounded in [−B,B] and with variance one. We have887

Φ⊤Φ =

k∑
m=1

Φm·Φ
⊤
m·, E[Φm·Φ

⊤
m·] = σ2Id, λd(Φm·Φ

⊤
m·) ≤ dB2.

At this point, we can apply lemma 3, that ensures with probability 1− 2δ, for k sufficiently large,888

(
1−

√
5dB2 log(d/δ)

kσ2

)
kσ2 ≤ λmin(Φ

⊤Φ) ≤ λmax(Φ
⊤Φ) ≤

(
1 +

√
2dB2 log(d/δ)

kσ2

)
kσ2.

Now, we can fix σ = 1 as in the assumption and rewrite the projection operator in the following form889

Πd,µ := k−1Φ(k−1Φ⊤Φ)−1Φ⊤ = k−1ΦΦ⊤ + k−1Φ∆Φ⊤,

where ∆ has all the eigenvalues of magnitude less than
√

5dB2 log(d/δ)
kσ2 , by the previous result.890

We now bound the infinity norm of the two terms separately. First,891

∥k−1ΦΦ⊤∥∞
∗
=

1

k
max

m=1,...k
∥(ΦΦ⊤)m·∥1

= max
m=1,...k

1

k

k∑
n=1

∣∣∣∣∣
d∑

i=1

ΦmiΦni

∣∣∣∣∣ ,
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where ∗ holds since the infinity norm of a matrix corresponds to the maximum 1−norm between its892

rows. Now, note that, as the rows are independent, each variable
∑d

i=1 ΦmiΦni, for m ̸= n is a sum893

of i.i.d. random variables such that894

• ΦmiΦni is bounded in [−B2, B2] almost surely.895

• The variance is

E[(ΦmiΦni)
2] = E[Φ2

miΦ
2
ni] = E[Φ2

mi]E[Φ2
ni] = 1.

Therefore, Bernstein’s inequality 16 ensures that, w.p. 1− δ896

∣∣∣∣∣
d∑

i=1

ΦmiΦni

∣∣∣∣∣ ≤√2d log(2/δ) +
2B2

3
log(2/δ).

Making a union bound over the k2 − k pairs m ̸= n, we get, still with probability at least 1− δ,897

∀n ̸= m

∣∣∣∣∣
d∑

i=1

ΦmiΦni

∣∣∣∣∣ ≤√4d log(2k/δ) +
4B2

3
log(2k/δ). (10)

At this point, we simply have, with probability 1− δ,898

∥k−1ΦΦ⊤∥∞ = max
m=1,...k

1

k

k∑
n=1

∣∣∣∣∣
d∑

i=1

ΦmiΦni

∣∣∣∣∣
≤ dB2

k
+ max

m=1,...k

1

k

k∑
n=1,n̸=m

∣∣∣∣∣
d∑

i=1

ΦmiΦni

∣∣∣∣∣
10
≤ dB2

k
+ max

m=1,...k

1

k

k∑
n=1,n̸=m

(√
4d log(2k/δ) +

4B2

3
log(2k/δ)

)

=
√
4d log(2k/δ) +

4B2

3
log(2k/δ) +

dB2

k
.

For the second term, we have899

∥k−1Φ∆Φ⊤∥∞ ≤ k−1 max
m=1,...k

k∑
n=1

∣∣⟨Φm·, (∆Φ⊤)·n⟩
∣∣

≤ k−1 max
m=1,...k

k∑
n=1

∥Φm·∥2∥(∆Φ⊤)·n∥2

∗
≤ k−1 max

m=1,...k

k∑
n=1

dB2

√
k

≤ dB2

√
k
,

where ∗ comes from the bound on the eigenvalues of ∆. Putting everything together, we have proved900

that901

∥Πd,µ∥∞ ≤
√
4d log(2k/δ) +

4B2

3
log(2k/δ) +

dB2

k
+

dB2

√
k

=
√

4d log(2k/δ) +O(d/
√
k).
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To show that we cannot go much lower than this quantity, note that, even ignoring the contribution of902

∆ we have903

∥Πd,µ∥∞ ≈ ∥k−1ΦΦ⊤∥∞ = max
m=1,...k

1

k

k∑
n=1

∣∣∣∣∣
d∑

i=1

ΦmiΦni

∣∣∣∣∣ .
Therefore,904

E[∥Πd,µ∥∞] ≈ E

[
max

m=1,...k

1

k

k∑
n=1

∣∣∣∣∣
d∑

i=1

ΦmiΦni

∣∣∣∣∣
]

≥ max
m=1,...k

1

k

k∑
n=1

E

[∣∣∣∣∣
d∑

i=1

ΦmiΦni

∣∣∣∣∣
]

≥ max
m

1

k

k∑
n=1,n̸=m

Ω(
√
d) = Ω(

√
d).

The last passage comes from the fact that, for n ̸= m, we have the expected value of the modulus a905

sum of d independent random variables, which grows as
√
d.906

Proposition 21. Let µ, ν be two probability distributions on the discrete set X such that for all907

x ∈ X , C ≥ µ(x)
ν(x) ≥ c > 0. Then, Λd,µ ≤ C

c Λd,ν .908

Proof. The following identity holds for the Lebesgue constant909

Λd,µ = sup
x∈X

∫
X
φd(x)

⊤φd(z) dµ(z)

= sup
x∈X

∫
X
φd(x)

⊤R(µ)−1R(µ)−⊤ dµ(z)

= sup
x∈X

∫
X
|φd(x)

⊤G(µ)−1φd(z)| dµ(z),

where G(µ) =
∫
X φd(x)φd(x)

⊤ dµ(x) and R(µ) is its Cholesky factor, such that R(µ)⊤R(µ) =
G(µ); here, the second passage comes from the fact that the Cholesky factor of a matrix corresponds
to the R factor in the QR factorization, which is the one giving Graham-Schmidt orthogonalization
Quarteroni et al. [2010]. In fact, letting φd(x) be the basis orthonomalized w.r.t. µ, we have

φd(x)
⊤φd(z)

⊤ = φd(x)
⊤G(µ)−1φd(z).

Note that, by absolute continuity, we have, for any x ∈ X910

∫
X
|φd(x)

⊤G(µ)−1φd(z)| dµ(z) ≤ C

∫
X
|φd(x)

⊤G(µ)−1φd(z)| dν(z)

≤ C

∫
X

∣∣∣∣∣φd(x)
⊤
(∫

X
φd(z

′)φd(z
′)⊤ dµ(z′)

)−1

φd(z)

∣∣∣∣∣ dν(z)
≤ C

∫
X

∣∣∣∣∣φd(x)
⊤c−1

(∫
X
φd(z

′)φd(z
′)⊤ dν(z′)

)−1

φd(z)

∣∣∣∣∣ dν(z)
=

C

c

∫
X

∣∣∣∣∣φd(x)
⊤
(∫

X
φd(z

′)φd(z
′)⊤ dν(z′)

)−1

φd(z)

∣∣∣∣∣ dν(z)
=

C

c

∫
X

∣∣φd(x)
⊤G(ν)−1φd(z)

∣∣ dν(z).
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Passing to the supremum, we get the thesis.911

D Proofs from section 4912

D.1 Lower bound for standard ridge regression913

Lemma 7. Let Πλ
d,µ be the operator defined in this way:914

Πλ
d,µf := φd(·)⊤θλ θλ = argmin

θ
∥f(·)−φd(·)⊤θ∥2L2 + λ∥θ∥22. (11)

Then, we have

Πλ
d,µf =

Πd,µf

1 + λ
.

Proof. We start from the definition of θλ:915

θλ = argmin
θ
∥f(·)−φd(·)⊤θ∥2L2 + λ∥θ∥22

= argmin
θ
∥Πd,µf(·) + ζd,µ(·)−φd(·)⊤θ∥2L2 + λ∥θ∥22

= argmin
θ
∥ζd,µ∥2L2 + ∥Πd,µf(·)−φd(·)⊤θ∥2L2 + λ∥θ∥22,

where the last passage comes from Parseval’s theorem, as ζd,µ is orthogonal in L2 to the span of φd,916

while Πd,µf(·),φd(·)⊤θ belongs to this vector space. We then write the operator Πd,µf explicitly:917

θλ = argmin
θ
∥Πd,µf(·)−φd(·)⊤θ∥2L2 + λ∥θ∥22

= argmin
θ

∥∥∥∥∥
d∑

i=1

⟨f, φi⟩L2φi(·)−φd(·)⊤θ

∥∥∥∥∥
2

L2

+ λ∥θ∥22

= argmin
θ

d∑
i=1

(⟨f, φi⟩L2 − θi)
2 + λθ2i .

The last passage holds from Parseval’s theorem since φi are orthonormal in L2. Note that, as the θi918

in the last minimization problem are disentangled, we can find as explicit solution919

θλ,i =
⟨f, φi⟩L2

1 + λ
, Πλ

d,µf =
Πd,µf

1 + λ
.

This completes the proof.920

Lemma 8. Let Πλ
d,µ be defined according to equation 11. For every feature map φd we have

sup
f∈L∞(X )

∥Πλ
d,µf − f∥∞

∥Π∞f − f∥∞
≥
(
Λd,µ − 1− 2λ

1 + λ

)
.

Proof. By definition of Lebesgue constant, for every ε > 0 there is a function g such that

∥Πd,µg∥∞ = (Λd,µ − ε)∥g∥∞.

Take f = Π∞g − g. We have, by lemma 7,921
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∥Πλ
d,µf − f∥∞ =

∥∥∥∥Πd,µf

1 + λ
− f

∥∥∥∥
∞

= ∥(1 + λ)−1Πd,µ(P
d
∞g − g)−Π∞g + g∥∞

= ∥(1 + λ)−1Π∞g − (1 + λ)−1Πd,µg − P d
∞g + g∥∞

=

∥∥∥∥−(1 + λ)−1Πd,µg −
λ

1 + λ
P d
∞g + g

∥∥∥∥
∞

.

At this point, note that
∥Π∞g∥∞ ≤ 2∥g∥∞,

as follows from922

∥Π∞g∥∞ ≤ ∥g −Π∞g∥∞ + ∥g∥∞
≤ ∥g − 0∥∞ + ∥g∥∞ = 2∥g∥∞.

Using this property, we have923

∥Πλ
d,µf − f∥∞ ≥

∥∥∥∥−(1 + λ)−1Πd,µg −
λ

1 + λ
Π∞g + g

∥∥∥∥
∞

≥ ∥ − (1 + λ)−1Πd,µg∥∞ −
1 + 2λ

1 + λ
∥g∥∞.

At this point, using the definition of g,924

∥ − (1 + λ)−1Πd,µg∥∞ −
1 + 2λ

1 + λ
∥g∥∞ ≥

(
Λd,µ

1 + λ
− ε− 1 + 2λ

1 + λ

)
∥Π∞g − g∥∞

=

(
Λd,µ

1 + λ
− ε− 1 + 2λ

1 + λ

)
∥f∥∞

≥
(

Λd,µ

1 + λ
− ε− 1 + 2λ

1 + λ

)
∥Π∞f − f∥∞.

The thesis follows letting ε→ 0.925

Theorem 7. Let θ̂n,RIDGE the output of λ−ridge regression. For any feature map926

φd(·) : X → Rd there is f ∈ L∞(X ) such that, for infinite data E∞(θ̂∞,RIDGE) =927

Ω
(
max

{
(Λd,µ − 2λ)E∞(f), λ

λ+1

})
.928

Proof. Let f̂n be the output of λ−ridge regression, that is the function φd(·)⊤θ̂n, where929

θ̂n := argmin
θ∈Rd

n∑
t=1

(φd(xt)
⊤θ − yt)

2 + λn∥θ∥22 xt
i.i.d.∼ µ.

By the uniform law of large numbers, in the limit, the minimizer f̂n converges to Πλ
d,µf , the930

regularized projection operator is defined as follows931

Πλ
d,µf (·) := φd(·)⊤θλ θλ = argmin

θ
∥f(·)−φd(·)⊤θ∥2L2 + λ∥θ∥22.

We start showing the λ
λ+1 lower bound. Taking any function in the span of φd(·) with ∥f∥∞ = 1 we932

have, by lemma 7,933

∥f −Πλ
d,µf∥∞ = ∥f − (1 + λ)−1f∥∞ =

λ

λ+ 1
.
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To show the other part, use lemma 8 to define a function f such that934

∥Πλ
d,µf − f∥∞ ≥

(
Λd,µ − 2− 2λ

1 + λ

)
∥Π∞f − f∥∞.

Replacing ∥Π∞f − f∥∞ = E∞(f) completes the proof.935

D.2 Proofs from section 4.1936

Proposition 22. Let α ∈ AD
d (equation (5)) and ΠRidge

α,µ be defined according to equation (4). Then,

∥f(·)−ΠRidge
α,µ f(·)∥∞ ≤ (1 + Λα,µ)E∞(f).

Proof. We have937

∥f − P 2
hf∥∞ = ∥Πd,∞f + ξd − P 2

h[Πd,∞f + ξd]∥∞
∗
= ∥ξd − P 2

h[ξd]∥∞
≤ ∥ξd∥∞ + ∥P 2

h[ξ]∥∞
= ∥ξd∥∞ + Λh∥ξd∥∞.

Here, the key passage (*) holds since P 2
h by definition ?? is the identity over everything in the span938

of the first d features, so Πd,∞f in particular.939

Theorem 9. Let assumption 1 hold. Then, for any δ > 0, with probability 1− δ,

E∞(θ̂n,α) ≤ (1 + Λα,µn
)E∞(f) +

σφ̂2,D

√
2 log(2X/δ)√
n

.

Proof. Let θ̂n the estimator corresponding to P 2
α in the parameterization of φ̂D(·), so that

φ̂d(·)⊤θ̂n = P̂ 2
αf =: f̂n(·).

The following decomposition holds:940

∥f(·)− f̂n(·)∥∞ ≤ ∥f(·)− P̂ 2
αf(·)∥∞ + ∥P̂ 2

αf(·)− f̂n(·)∥∞
≤ (1 + Λ̂α)E∞(f) + ∥P̂ 2

αf(·)− f̂n(·)∥∞.

where we have applied proposition 8 for µn(·). Let us focus on the second term. As in the proof of941

the previous theorems, we call θ⋆ the vector corresponding to the orthogonal projection over φ̂D(·)942

so that we have, for every x ∈ X943

f̂n(x) = φ̂D(x)⊤Iα
1

n

n∑
t=1

ytφ̂D(xt)

= φ̂D(x)⊤Iα
1

n

n∑
t=1

(φ̂D(xt)
⊤θ⋆ + ζD(xt) + ηt)φ̂D(xt)

= φ̂D(x)⊤Iα
1

n

n∑
t=1

φ̂D(xt)φ̂D(xt)
⊤θ⋆

+ φ̂D(x)⊤Iα
1

n

n∑
t=1

ζD(xt)φ̂D(xt)

+ φ̂D(x)⊤Iα
1

n

n∑
t=1

ηtφ̂D(xt).

By orthogonality, the first term corresponds to944
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φ̂D(x)⊤Iα
1

n

n∑
t=1

φ̂D(xt)φ̂D(xt)
⊤

︸ ︷︷ ︸
ID

θ⋆ = φ̂D(x)⊤Iαθ⋆ = P 2
α(x).

The second term is945

φ̂D(x)⊤Iα
1

n

n∑
t=1

ζD(xt)φ̂D(xt) = φ̂D(x)⊤Iα

∫
X
ζD(z)φ̂D(z) dµn(z)︸ ︷︷ ︸

0 vector

= 0,

by definition of orthogonal projection. The third term is946

φ̂D(x)⊤Iα
1

n

n∑
t=1

ηtφ̂D(xt),

which can be bounded as the corresponding terms in theorems 4 and 5: as ηt are independent and947

σ−subgaussian, Lemma 5.4 and Theorem 5.3 from Lattimore and Szepesvári [2020] ensure that,948

with probability at least 1− 2δ949 ∣∣∣∣∣φ̂d(x)
⊤Iαn

−1
n∑

t=1

φ̂d(xt)ηt

∣∣∣∣∣ ≤
√√√√2σ2n−1

n∑
t=1

(φ̂d(x)
⊤Iαφ̂d(xt))

2
log(1/δ)

=
√
2σ2n−1∥φ̂d(x)∥22 log(1/δ)

=
√
2 log(1/δ)σn−1/2∥φ̂d(x)∥2.

Where the only difference w.r.t. the other proofs is the presence of Iα, which is erased after the950

first step since, being α ∈ AD
d , its norm is ≤ 1. This proves that the last term is bounded by951 √

2 log(1/δ)σn−1/2φ̂2,D. Making a union bound over X gives, w.p. 1− δ,952

sup
x∈X
|P̂ 2

αf(x)− f̂n(x)| ≤
√
2 log(1/δ)σn−1/2φ̂2,D.

Putting everything together, we have proved that953

E∞(θ̂n,α) ≤ ∥f(·)− f̂n(·)∥∞ ≤ (1 + Λ̂α)E∞(f) +
σφ̂2,D

√
2 log(2X/δ)√
n

.

954

Proposition 23. Under assumption 2 we have, with probability 1 − δ for every α ∈955

AD
d at the same time, |φ̂D,2 − φD,2| ≤ Õ(φ2

D,2

√
log(1/δ)/n), and |Λα,µn

− Λα,µ| ≤956

Õ
(√

dφ2
D,2

√
log(1/δ)

√
n

+
√
dφ3

D,2 log(1/δ)

n

)
.2957

We prove this theorem for a generic d ∈ N. The result follows for d = D.958

We define Vn := 1
n

∑n
t=1 φd(xt)φd(xt)

⊤. Let φ̂d(·) the basis obtained from φd by Gram-Schmidt959

orthogonalization w.r.t. µn, the empirical distribution of the {xt}t. As in the main paper, we let960

Rn = Chol(Vn) and, since the Cholesky factor corresponds to the matrix given by Graham Schmidt961

orthogonalization (proposition 3.4 in Quarteroni et al. [2010]),962

φd(xt) = R⊤
n φ̂d(xt) φ̂d(xt) = R−⊤

n φd(xt). (12)

2The statement of this theorem is slightly different from the one in the main paper of the submission, as we
have made the orders of magnitude more precise.
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so that, under this convenient normalization, we can pass from φd(xt) to φ̂d(xt) trough a matrix963

that is exactly the Cholesky factor of Vn. In this setting, Theorem 2.1. in Drmač et al. [1994], which964

provides a stability result for the Cholesky decomposition which, combined with our theorem gives965

1−O
(
φd,2

√
log(1/δ)/n log(d)

)
≤ λmin(Rn) ≤ λmax(Rn) ≤ 1 +O

(
φd,2

√
log(1/δ)/n log(d)

)
(13)

We can now proceed with the proof.966

Proof. Bounding norm difference967

We have to measure968

sup
x∈X
∥φ̂d(x)−φd(x)∥2.

As we said, the relation between the two is φd(x) = R⊤
n φ̂d(x) which we can also wite as969

R−⊤
n φd(x) = φ̂d(x), so that970

sup
x∈X
∥φ̂d(x)−φd(x)∥2 = sup

x∈X
∥(Id −R−⊤

n )φd(x)∥2.

At this point, equation (13) ensures that ∥Id −R−⊤
n ∥2→2 = O

(
φd,2

√
log(1/δ)/n log(d)

)
, so we971

get972

sup
x∈X
∥φ̂d(x)−φd(x)∥2 ≤ O

(
φ2
d,2

√
log(1/δ)/n log(d)

)
. (14)

A simple yet useful consequence of this result is973

|φd,2 − φ̂d,2| = sup
x∈X
|∥φ̂d(x)∥2 − sup

x∈X
∥φd(x)∥2| (15)

≤ sup
x∈X
|∥φ̂d(x)∥2 − ∥φd(x)∥2| (16)

≤ sup
x∈X
∥φ̂d(x)−φd(x)∥2 (17)

= O
(
φ2
d,2

√
log(1/δ)/n log(d)

)
(18)

Lebesgue constants difference974

Let us bound the distance between the estimated and the true Lebesgue constant, for any α ∈ AD
d ,975
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|Λα,µn
− Λα,µ| =

∣∣∣∣∣supx∈X

1

n

n∑
t=1

∣∣∣∣∣
d∑

i=1

αiφ̂i(x)φ̂i(xt)

∣∣∣∣∣− sup
x∈X

∫
X

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(z)

∣∣∣∣∣ dµ(z)
∣∣∣∣∣

≤ sup
x∈X

∣∣∣∣∣ 1n
n∑

t=1

∣∣∣∣∣
d∑

i=1

αiφ̂i(x)φ̂i(xt)

∣∣∣∣∣−
∫
X

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(z)

∣∣∣∣∣ dµ(z)
∣∣∣∣∣

≤ sup
x∈X

∣∣∣∣∣ 1n
n∑

t=1

∣∣∣∣∣
d∑

i=1

αiφ̂i(x)φ̂i(xt)

∣∣∣∣∣− 1

n

n∑
t=1

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(xt)

∣∣∣∣∣
∣∣∣∣∣

+ sup
x∈X

∣∣∣∣∣ 1n
n∑

t=1

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(xt)

∣∣∣∣∣−
∫
X

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(z)

∣∣∣∣∣ dµ(z)
∣∣∣∣∣

= sup
x∈X

∣∣∣∣∣ 1n
n∑

t=1

∣∣∣∣∣
d∑

i=1

αiφ̂i(x)φ̂i(xt)

∣∣∣∣∣−
∣∣∣∣∣

d∑
i=1

αiφi(x)φi(xt)

∣∣∣∣∣
∣∣∣∣∣

+ sup
x∈X

∣∣∣∣∣ 1n
n∑

t=1

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(xt)

∣∣∣∣∣−
∫
X

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(z)

∣∣∣∣∣ dµ(z)
∣∣∣∣∣ .

In the following, we call976

First term := sup
α∈AD

d ,x∈X

∣∣∣∣∣ 1n
n∑

t=1

∣∣∣∣∣
d∑

i=1

αiφ̂i(x)φ̂i(xt)

∣∣∣∣∣−
∣∣∣∣∣

d∑
i=1

αiφi(x)φi(xt)

∣∣∣∣∣
∣∣∣∣∣

and977

Second term := sup
α∈AD

d ,x∈X

∣∣∣∣∣ 1n
n∑

t=1

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(xt)

∣∣∣∣∣−
∫
X

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(z)

∣∣∣∣∣ dµ(z)
∣∣∣∣∣ .

Bound the first term.978

Fix α ∈ AD
d ,979

First part =
1

n

n∑
t=1

∣∣∣∣∣
d∑

i=1

αiφ̂i(x)φ̂i(xt)

∣∣∣∣∣−
∣∣∣∣∣

d∑
i=1

αiφi(x)φi(xt)

∣∣∣∣∣
≤ 1

n

n∑
t=1

∣∣∣∣∣
d∑

i=1

αiφ̂i(x)φ̂i(xt)−
d∑

i=1

αiφi(x)φi(xt)

∣∣∣∣∣
=

1

n

n∑
t=1

∣∣φ̂d(x)
⊤Iαφ̂d(xt)−φd(x)

⊤Iαφd(xt)
∣∣ .

Where, Iα = diag(α). At this point, we can replace the result of equation 12: getting980

36



First part ≤ 1

n

n∑
t=1

∣∣φ̂d(x)
⊤Iαφ̂d(xt)−φd(x)

⊤Iαφd(xt)
∣∣

=
1

n

n∑
t=1

∣∣φ̂d(x)
⊤Iαφ̂d(xt)− φ̂d(x)

⊤RnIαR
⊤
n φ̂d(xt)

∣∣
≤ 1

n

n∑
t=1

∣∣φ̂d(x)
⊤(Iα −RnIαR

⊤
n )φ̂d(xt)

∣∣
≤ 1

n

n∑
t=1

∥φ̂d(x)∥2∥Iα −RnIαR
⊤
n ∥2∥φ̂d(xt)∥2.

This formulation allows us to apply equation 13: As Iα is diagonal matrix with elements in [0, 1], we981

have982

∥Iα −RnIαR
⊤
n ∥2 = O

(
φd,2

√
log(1/δ)/n log(d)

)
.

This gives the following983

First part ≤ O

(
1

n

n∑
t=1

∥φ̂d(x)∥2∥H −RnHR⊤
n ∥2∥φ̂d(xt)∥2

)

≤ O

(
φd,2

√
log(1/δ) log(d)
√
n

1

n

n∑
t=1

∥φ̂d(x)∥2∥φ̂d(xt)∥2

)

≤ O

(
φd,2φ̂d,2

√
log(1/δ) log(d)
√
n

∑n
t=1 ∥φ̂d(xt)∥2

n

)

≤ O

(
φd,2φ̂d,2

√
log(1/δ) log(d)
√
n

√
n
∑n

t=1 ∥φ̂d(xt)∥22
n

)

= O

(
φd,2φ̂d,2

√
log(1/δ) log(d)
√
n

√
n2d

n

)

= O

(√
dφd,2φ̂d,2

√
log(1/δ) log(d)
√
n

)
.

Here, the first equality is due to the fact that, being φ̂d orthonormal w.r.t. µn, we have984 ∑n
t=1 ∥φ̂d(xt)∥22 = nd. This holds uniformly for every α, as we have only used the fact that985

∥Iα∥2 ≤ 1.986

Bounding the second term.987

The second term corresponds to988

Second term = sup
x∈X

∣∣∣∣∣ 1n
n∑

t=1

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(xt)

∣∣∣∣∣−
∫
X

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(z)

∣∣∣∣∣ dµ(z)
∣∣∣∣∣ .

First, we fix x ∈ X and α ∈ AD
d and use the scalar product to write it as989 ∣∣∣∣∣ 1n

n∑
t=1

∣∣φd(x)
⊤Iαφd(xt)

∣∣− ∫
X

∣∣φd(x)
⊤Iαφd(z)

∣∣ dµ(z)∣∣∣∣∣ . (19)
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Note that by definition990

E[|φd(x)
⊤Iαφd(xt)|] =

∫
X

∣∣φd(x)
⊤Iαφd(z)

∣∣ dµ(z).
Moreover,991

Var(|φd(x)
⊤Iαφd(xt)|) ≤ E

[
|φd(x)

⊤Iαφd(xt)|2
]

= E
[
φd(x)

⊤Iαφd(xt)φd(xt)
⊤Iαφd(x)

]
= φd(x)

⊤Iα E
[
φd(xt)φd(xt)

⊤]︸ ︷︷ ︸
=Id

Iαφd(x)

= φd(x)
⊤I2αφd(x)

≤ φ2
2,

where the last step comes from the fact that I2α ⪯ Id. For the same reason, we also have992

|φd(x)
⊤Iαφd(xt)| ≤ φ2

2 almost surely. These three results allow us to apply Bernstein’s inequality993

16 for994

• Xt = |φd(x)
⊤Iαφd(xt)| − E[|φd(x)

⊤Iαφd(xt)|].995

• σ2 =
∑n

t=1 Var(|φd(x)
⊤Iαφd(xt)|) ≤ nφ2

2.996

• B = φ2
2.997

This gives, with probability at least 1− δ,998 ∣∣∣∣∣
n∑

t=1

Xt

∣∣∣∣∣ ≤
√

2nφ2
2 log(2/δ) +

2φ2
2

3
log(2/δ).

So, we can bound equation 19, which corresponds to 1
n |
∑n

t=1 Xt|, as follows.999

∣∣∣∣∣ 1n
n∑

t=1

∣∣φd(x)
⊤Iαφd(xt)

∣∣− ∫
X

∣∣φd(x)
⊤Iαφd(z)

∣∣ dµ(z)∣∣∣∣∣ ≤
√

2φ2
2 log(2/δ)

n
+

2φ2
2

3n
log(2/δ).

The former holds for any fixed α ∈ AD
d . To have a uniform bound, let1000

A′ = ε− Cover of AD
d ε = (nφd,2)

−1,

so that log |A′| ≤ d log(nφd,2). Making a union bound gives, ∀α ∈ A′1001

∣∣∣∣∣ 1n
n∑

t=1

∣∣φd(x)
⊤Iαφd(xt)

∣∣− ∫
X

∣∣φd(x)
⊤Iαφd(z)

∣∣ dµ(z)∣∣∣∣∣
≤

√
2dφ2

d,2 log(2nφd,2/δ)

n
+

2dφ2
2

3n
log(2nφd,2/δ).

To pass to the general case, note that for every α ∈ AD
d there is α′ ∈ A′ such that1002 ∣∣ 1

n

∑n
t=1

∣∣φd(x)
⊤Iαφd(xt)

∣∣− ∫X ∣∣φd(x)
⊤Iαφd(z)

∣∣ dµ(z)∣∣ changes no more than 2φd,2 between1003

the two, by definition of ε−cover. Therefore, we have, with probability at least 1−δ over all α ∈ AD
d1004

at the same time1005
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∣∣∣∣∣ 1n
n∑

t=1

∣∣φd(x)
⊤Iαφd(xt)

∣∣− ∫
X

∣∣φd(x)
⊤Iαφd(z)

∣∣ dµ(z)∣∣∣∣∣
≤

√
2dφ2

d,2 log(2nφd,2/δ)

n
+

2dφ2
2

3n
log(2nφd,2/δ) + 2φd,2.

This means,1006

Second term ≤ Õ

√dφ2
d,2 log(1/δ)

n
+

dφ2
2

n
log(1/δ)

 .

Putting the two results toghether. By the two bounds that we got for the two terms, it follows with1007

probability at least 1− δ1008

sup
α∈AD

d

|Λα,µn − Λα,µ| ≤ Õ

√dφd,2φ̂d,2

√
log(1/δ)

√
n

+

√
dφ2

d,2 log(1/δ)

n
+

dφ2
2

n
log(1/δ)

 .

To end the proof, note that, using equation 18, the difference between φd,2 and φ̂d,2 is of order1009

φ2
d,2

√
log(1/δ)/n, so that1010

√
dφd,2φ̂d,2

√
log(1/δ)

√
n

≤
√
dφd,2(φd,2 + φ2

d,2

√
log(1/δ)/n)

√
log(1/δ)

√
n

=

√
dφ2

d,2

√
log(1/δ)
√
n

+

√
dφ3

d,2 log(1/δ)

n
.

Finally, note that, as
√
d ≤ φd,2, the term

√
dφ3

d,2 log(1/δ)

n dominates over dφ2
2

n log(1/δ) that we had1011

before.1012

D.3 Proofs about gradient method1013

Proposition 24. The function J : AD
d → (0,+∞) given by J(α) := Λα,µn

is convex in α.1014

Proof. By definition,
J(α) = ∥M(α)∥∞,

where M(α) = 1
n

∑d
i=1 αiφ̂i(x)φ̂i(xt). Therefore, in particular1015

J(α) = sup
x∈X ,f∈{−1,1}n

∣∣∣∣∣ 1n
d∑

i=1

αiφ̂i(x)φ̂i(xt)f

∣∣∣∣∣ .
This function is convex, being the supremum of a family of linear functions 1

n

∑d
i=1 αiφ̂i(x)φ̂i(xt)1016

in α.1017

Theorem 12. Fix ϵ > 0. Algorithm 1, after a number of iterations I = Õ(ϵ−2φ̂2
2,D(D − d)) outputs1018

α(I) ∈ AD
d such that J(α(I)) ≤ infα∈AD

d
J(α) + ϵ.1019

Proof. The first step of this proof consists in finding an upper bound for any sub-gradient of α. As1020

we said,1021
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J(α) = sup
x∈X ,f∈{−1,1}n

∣∣∣∣∣ 1n
d∑

i=1

αiφ̂i(x)φ̂i(xt)f

∣∣∣∣∣ = sup
x∈X ,f∈{−1,1}n

∣∣∣∣ 1n φ̂D(x)⊤IαΦ̂
⊤f
∣∣∣∣ ,

where Iα = diag(α) is a D ×D diagonal matrix and Φ̂ is the n× d matrix having, as rows, φ̂D(xt)1022

for each t = 1, . . . n. At this point note that, by duality1023

J(α) = sup
x∈X ,f∈{−1,1}n

∣∣∣∣ 1n φ̂D(x)⊤IαΦ̂
⊤f
∣∣∣∣ = sup

x∈X

1

n

n∑
t=1

|{φ̂D(x)⊤IαΦ̂
⊤}t|,

where {}t denotes the t−th component of φ̂D(x)⊤IαΦ̂
⊤, which is a 1 × n row vector. Now,1024

assuming3 that the supremum is obtained by just one value x∗ ∈ X , we can compute the gradient as1025

∇J(α) = ∇ 1

n

n∑
t=1

|{φ̂D(x∗)
⊤IαΦ̂

⊤}t|

=
1

n

n∑
t=1

sign({φ̂D(x∗)
⊤IαΦ̂

⊤}t)∇{φ̂D(x∗)
⊤IαΦ̂

⊤}t

=
1

n

n∑
t=1

sign({φ̂D(x∗)
⊤IαΦ̂

⊤}t)φ̂D(x∗)
⊤ ⊙ {Φ̂}⊤t .

In the last line, we have used the Hadamard product ⊙, that is defined, for two vectors of length D1026

like φ̂D(x∗)
⊤ and {Φ̂}⊤t , as the component-wise product, generating another vector of length D.1027

Now, we are going to bound the two-norm of this gradient:1028

∥∇J(α)∥22 =

D∑
i=1

{
1

n

n∑
t=1

sign({φ̂D(x∗)
⊤IαΦ̂

⊤}t)φ̂D(x∗)
⊤ ⊙ {Φ̂}⊤t

}2

i

≤
D∑
i=1

1

n

n∑
t=1

{
sign({φ̂D(x∗)

⊤IαΦ̂
⊤}t)φ̂D(x∗)

⊤ ⊙ {Φ̂}⊤t
}2

i

≤
D∑
i=1

1

n

n∑
t=1

{
φ̂D(x∗)

⊤ ⊙ {Φ̂}⊤t
}2

i

≤
D∑
i=1

1

n

n∑
t=1

φ̂i(x∗)
2φ̂i(xt)

2

≤
D∑
i=1

φ̂i(x∗)
2 1

n

n∑
t=1

φ̂i(xt)
2

︸ ︷︷ ︸
=1

= φ̂2
D,2,

where the last passage holds since the features φ̂i(·) are orthonormal w.r.t. µn(·). Under these1029

assumption, namely1030

1. J is convex1031

2. Each sub-gradient has norm bounded by G := φ̂2,D1032

3. The diameter of the optimization spaceHD
d is R :=

√
D − d1033

3if there are ties, the argument applied to each of them still holds bounding the norm of the sub-gradient
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equation (3) on Boyd et al. [2003] guarantees that running the subgradient method for I iterations
with step size

γℓ =
R

G
√
ℓ+ 1

(corresponding to line 7), achieves suboptimality ϵI bounded by1034

ϵI ≤
R2 +G2

∑I
ℓ=1 γ

2
ℓ

2
∑I

ℓ=1 γℓ
≤ R2 +R2(log(I) + 1)

(R/G)
√
I

≤ 2RG log(I)√
I

=
2φ̂2,D

√
D − d log(I)√

I
.

Therefore, a number of iterations I = 4ϵ−2φ̂2
2,D(D−d) log3(4φ̂2

2,D(D−d)) allows to ensure ϵI ≤ ϵ.
In this way, we have

Λ̂α∗ − inf
α∈AD

d

Λ̂α = J(α(I))− inf
α∈AD

d

J(α) ≤ ϵI ≤ ϵ,

which completes the proof.1035

Theorem 13. Let Assumptions 1 and 2 hold and fix δ > 0. Then, with probability 1− δ,

E∞(θ̂n,BWR) ≤ (1 + ΛOracle
µ )E∞(f) + Õ

(
φ2,D

√
D log(|X |/δ)
√
n

+
φ2
2,D log(|X |/δ)

n

)
.

Proof. By theorem 9 and the definition of θ̂n,BWR,1036

E∞(θ̂n,BWR) ≤ (1 + Λα(I),µn
)E∞(f) +

σφ̂2,D

√
2 log(2X/δ)√
n

. (20)

By theorem 12, for fixed ϵ, we have Λα(I),µn
≤ minα∈AD

d
Λα,µn

+ ϵ. Moreover, note that1037

ΛOracle
µ = ΛαOracle

µ ,µ

≥ ΛαOracle
µ ,µn

− Õ

(
φ2,D

√
D log(|X |/δ)
√
n

+
φ2
2,D log(|X |/δ)

n

)

≥ min
α∈AD

d

Λα,µn
− Õ

(
φ2,D

√
D log(|X |/δ)
√
n

+
φ2
2,D log(|X |/δ)

n

)

≥ Λα(I),µn
− ϵ− Õ

(
φ2,D

√
D log(|X |/δ)
√
n

+
φ2
2,D log(|X |/δ)

n

)
.

Replacing this relation in equation 20 we get the thesis.1038

1039

D.4 Gradient method1040

E Proofs of section 51041

Theorem 14. Let µ(·) = U([−1, 1]). There is a constant C independent of d such that, for D = 2d1042

and φd(x) = [1, . . . xd−1], φD(x) = [1, . . . , x2d−1], we have ΛOracle
µ ≤ C.1043

Proof. See Theorem 3.1 by Themistoclakis and Van Barel [2017]1044
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Algorithm 1 Subgradient Method

Require: Feature map φD, d, Number I of iterations
Ensure: Sequence α∗ ∈ AD

d
1: Compute φ̂D from φD via Gram-Schmidt orthogonalization
2: Define loss as in equation (??):

J(α) = ∥M(α)∥∞

3: Initialize α(0) ← [ones(d), zeros(D − d)]⊤

4: for ℓ = 1 to I do
5: Compute step size γℓ =

√
D−d

φ̂2,d

√
ℓ+1

6: Compute a subgradient gℓ ∈ ∂J(α(ℓ−1))
7: Update: α(ℓ) = α(ℓ−1) − γℓgℓ
8: if α(ℓ) /∈ AD

d then
9: Project: h(ℓ) = ΠHD

d
α(ℓ)

10: end if
11: end for
12: return α∗ = α(I)

Proposition 25. Fix γ > 0. There is a function f : [−1, 1]→ R such that, E∞(f)
d→ 0 and under

assumptions 1 and 2 for µ = U([−1, 1]), with probability one,

lim
d→∞

lim
n→∞

∥f(·)−φd(·)⊤θ̂n,BWR∥∞ = 0 lim
n→∞

∥f(·)−φd(·)⊤θ̂n,OLS∥∞ ≳ d1−γ .

Most of the proof of this proposition is about in building the function, that we are calling f(·).1045

The construction of the function in this proof is going to be quite involved. The function is going to1046

be a sum over n of terms of the form f̃n(·). The following notation will be used1047

1. Let dn dimension of the basis function used at step n1048

2. Let an = d−γ
n , for a parameter γ > 0 to be defined1049

3. Let hn width of the mollifier1050

4. Let Mn(·) = M(·/hn), where M(·) is the standard mollifier, that is, a nonnegative function1051

M(·) ∈ C∞((−1, 1)) with integral one and compact support.1052

5. fn(·) := sgn(φdn
(·)⊤φdn

(xn)), where xn is such that

∥φdn
(·)⊤φdn

(xn)∥L1 ≥ sup
x∈(−1,1)

∥φdn
(·)⊤φdn

(x)∥L1 − 1.

6. f̃n := fn ∗Mn1053

We are able to prove the following lemmas:1054

Lemma 9. For every n,

∥fn − f̃n∥L2 = ∥fn − fn ∗Mn∥L2 ≤ 4
√

hndn

Proof. In order to perform this proof, we need one result from mathematical analysis. In fact, call1055

bounded variation a function X = (−1, 1)→ R such that the following norm is bounded1056

∥f∥BV := sup
{xn}n⊂X

∑
n

|f(xn+1)− f(xn)|.

A well-known characterization of this space Ambrosio et al. [2000] ensures that the former norm is1057

equivalent to1058
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∥fn∥BV ∝ ∥f∥L1 + ∥f ′∥M ∥f ′∥M := sup
g∈C0(X ),∥g∥∞=1

∫
X
g(x)f ′(x)dx.

Now, we can proceed to the proof. First, note that by definition fn is in the BV ((−1, 1)) class with1059

∥fn∥BV = O(dn). Indeed, fn(·) takes only values in {−1,+1}, and can only jump between the two1060

values when φdn
(·)⊤φdn

(xn) = 0, which happens at most dn times, as the previous is a polynomial1061

of degree dn. At this point, by the properties of convolution,1062

fn(y)− fn ∗Mn(y) = fn ∗ (Mn(y)− δ(y))

= f ′
n ∗
(∫ y

−1

Mn(t)− δ(t) dt

)
,

Where we have moved the derivative in the first term. At this point, the properties of convolution1063

allow us to say that for any pair of functions g1, g2, ∥g1 ∗ g2∥L2 ≤ ∥g1∥M∥g2∥L2 . Therefore, we1064

have1065

∥fn(·)− fn ∗Mn(·)∥L2 ≤ ∥f ′
n(·)∥M

∥∥∥∥∫ y

−1

Mn(t)− δ(t) dt

∥∥∥∥
L2

≤ ∥fn(·)∥BV︸ ︷︷ ︸
≤dn

∥∥∥∥∫ y

−1

Mn(t)− δ(t) dt

∥∥∥∥
L2

.

At this point, note that by definition Mn(t) ≥ 0, its integral is one and its support is contained in1066

(−hn, hn). Therefore,1067

∣∣∣∣∫ y

−1

Mn(t)− δ(t) dt

∣∣∣∣ ≤

0 y ≥ hn

2 −hn < y < hn

0 y ≤ −hn

,

so that its L2 norm is bounded by 4
√
hn. This completes the proof.1068

1069

Lemma 10. For every m ≤ n, and s > 0

∥f̃m −Π∞
dn+1,∞f̃m∥∞ ≤ O(d−s

n+1h
−s
m ).

Proof. First, let us examine the smoothness of f̃m. Indeed, we have, for any s > 01070

∥f̃m∥Cs = ∥fm ∗Mm∥Cs

≤ ∥fm∥∞∥Mm∥Cs

= ∥Mm∥Cs = O(h−s
m ).

Therefore, by Jackson’s theorem, we have for any s,1071

∥f̃m −Πdn+1,∞f̃m∥ ≤ O(d−s
n+1∥f̃m∥Cs) = O(d−s

n+1h
−s
m ).

1072

Theorem 26. For any γ < 1/4 there is f∗ such that1073

• limd ∥f∗ −Πd,∞f∗∥∞ = 01074

43



• lim supd
∥f∗−Πd,µf

∗∥∞
d1−γ > 0.1075

Proof. Let

f∗(·) =
∞∑

n=1

anf̃n(·).

First part1076

Fix ε > 0. As an goes to zero faster than exponentially and ∥f̃n(·)∥∞ ≤ 1, we can find n0 such that1077 ∥∥∥∥∥f∗(·)−
n0∑
n=1

anf̃n(·)

∥∥∥∥∥
∞

≤ ε/2.

Now,
∑n0

n=1 anf̃n(·) is a finite sum of C∞([−1, 1]) functions, so it is uniformly continuous, in1078

particular. Therefore, by Stone-Weierstrass theorem, for sufficiently large d,1079 ∥∥∥∥∥
n0∑
n=1

anf̃n(·)−Πd,∞

n0∑
n=1

anf̃n(·)

∥∥∥∥∥
∞

≤ ε/2.

Putting the two results together, we have proved that, for sufficiently large d,1080

∥f∗ −Πd,∞f∗∥∞ ≤

∥∥∥∥∥f∗(·)−Πd,∞

n0∑
n=1

anf̃n(·)

∥∥∥∥∥
∞

≤ ε/2 +

∥∥∥∥∥
n0∑
n=1

anf̃n(·)−Πd,∞

n0∑
n=1

anf̃n(·)

∥∥∥∥∥
∞

≤ ε.

Second part Let us fix n = ℓ and consider1081

∥Πdℓ,µf
∗∥∞ =

∥∥∥∥∥Πdℓ,µ

∞∑
n=1

anf̃n(·)

∥∥∥∥∥
∞

=

∥∥∥∥∥Πdℓ,µ

ℓ−1∑
n=1

anf̃n(·) + Πdℓ,µaℓf̃ℓ(·) + Πdℓ,µ

∞∑
n=ℓ+1

anf̃n(·)

∥∥∥∥∥
∞

≥
∥∥∥Πdℓ,µaℓf̃ℓ(·)

∥∥∥
∞︸ ︷︷ ︸

A

−

∥∥∥∥∥Πdℓ,µ

ℓ−1∑
n=1

anf̃n(·)

∥∥∥∥∥
∞︸ ︷︷ ︸

B

−

∥∥∥∥∥Πdℓ,µ

∞∑
n=ℓ+1

anf̃n(·)

∥∥∥∥∥
∞︸ ︷︷ ︸

C

.

We are going to analyze the three terms separately.1082

(A) We start bounding the first term from below,1083

A = aℓ

∥∥∥Πdℓ,µf̃ℓ(·)
∥∥∥
∞

≥ aℓ ∥Πdℓ,µfℓ(·)∥∞ − aℓ

∥∥∥Πdℓ,µ(f̃ℓ(·)− fℓ(·))
∥∥∥
∞

≥ αℓΛdℓ,µ − αℓφ2,dℓ
∥cdℓ

(f̃ℓ(·)− fℓ(·))∥2
= αℓΛdℓ,µ − αℓφ2,dℓ

∥f̃ℓ(·)− fℓ(·)∥L2

≥ αℓΛdℓ,µ − 4αℓφ2,dℓ
dℓ
√
hℓ.
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Here, the second inequality comes from Cauchy-Schwartz, the sequent equality from1084

Parseval’s theorem and the last comes from lemma 9. Note that, for the polynomial basis,1085

φ2,dℓ
≈ Λdℓ,µ ≈ dℓ, so we get1086

A ≥ Ω
(
αℓdℓ(1− dℓ

√
hℓ)
)

(B) This term is1087

B =

∥∥∥∥∥Πdℓ,µ

ℓ−1∑
n=1

anf̃n(·)

∥∥∥∥∥
∞

≤
ℓ−1∑
n=1

an

∥∥∥Πdℓ,µf̃n(·)
∥∥∥
∞

≤
ℓ−1∑
n=1

an

∥∥∥Πdℓ,µ(f̃n(·)−Πdℓ,∞f̃n(·))
∥∥∥
∞

+ an

∥∥∥Πdℓ,∞f̃n(·)
∥∥∥
∞

.

The last passage holds as Πdℓ,µΠdℓ,∞f̃n(·) = Πdℓ,∞f̃n(·). Now, we can apply lemma 10,1088

as n < ℓ, which ensures1089

B ≤
ℓ−1∑
n=1

an

∥∥∥Πdℓ,µ(f̃n(·)−Πdℓ,∞f̃n(·))
∥∥∥
∞

+ an

∥∥∥Πdℓ,∞f̃n(·)
∥∥∥
∞

≤
ℓ−1∑
n=1

an

∥∥∥Πdℓ,µ(f̃n(·)−Πdℓ,∞f̃n(·))
∥∥∥
∞

+ an

∥∥∥Πdℓ,∞f̃n(·)
∥∥∥
∞

≤
ℓ−1∑
n=1

anΛℓ

∥∥∥f̃n(·)−Πdℓ,∞f̃n(·)
∥∥∥
∞

+ an

∥∥∥Πdℓ,∞f̃n(·)
∥∥∥
∞

≤
ℓ−1∑
n=1

and
−s+1
ℓ h−s

n + an

∥∥∥Πdℓ,∞f̃n(·)
∥∥∥
∞

.

(C) The last term can be simply bounded due to the fact that ∥f̃n∥∞ ≤ 1:1090

C ≤ dℓ

∞∑
n=ℓ+1

an.

Now, fix any γ < 1/4 and take1091

s = 2; dn = exp(1/γn); hn = exp(−1/(2γn+1)); an = exp(−1/γn−1).

We get1092

A ≥ Ω
(
αℓdℓ(1− dℓ

√
hℓ)
)

≥ Ω
(
exp((1− γ)/γℓ)(1− exp(1/γn − 1/(4γn+1)))

)
≥ Ω

exp((1− γ)/γℓ)(1− exp(1/γn (1− 1/(4γ))︸ ︷︷ ︸
≤0

))


≥ Ω

(
exp((1− γ)/γℓ)

)
= Ω(d1−γ

ℓ ).
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For term B, we have1093

B ≤ O

(
ℓ−1∑
n=1

and
−s+1
ℓ h−s

n + an

∥∥∥Πdℓ,∞f̃n(·)
∥∥∥
∞

)

≤ O

(
ℓ−1∑
n=1

and
−s+1
ℓ h−s

n + an

)

≤ O

(
ℓ−1∑
n=1

an exp((−s+ 1)/γℓ) exp(s/(2γn+1)) + an

)

≤ O

(
ℓ−1∑
n=1

an exp((−s+ 1)/γℓ) exp(s/(2γℓ)) + an

)

≤ O

ℓ−1∑
n=1

an exp((−s/2 + 1)/γℓ)︸ ︷︷ ︸
≤1

+an

 .

Last term:1094

C ≤ O

(
dℓ

∞∑
n=ℓ+1

an

)
≤ O

(
exp(1/γℓ)

∞∑
n=ℓ+1

exp(−1/γn−1)

)
= O

( ∞∑
m=0

exp(−1/γm)

)
.

Again, this term satisfies C = O(1), as the term exp(−1/γm) in the last sum decays faster than1095

2−m.1096

where the last passage holds as s = 2. Therefore we get B ≤ O(
∑ℓ−1

n=1 an) = O(1), since an decays1097

faster than 2−n which already generates a convergent seqeuence.1098

All together, these passages prove1099

∥Πdn,µf
∗∥∞ ≥ Ω(d1−γ

n ).

Therefore, taking this dn sequence entails lim supd→∞
∥f∗−Πd,µf

∗∥∞
d1−γ > 0.1100

Proof. (of proposition 15). Let f = f∗ defined before, for the specific value of γ > 0. Thanks to1101

part one of theorem 264, assumption E∞(f)
d→ 0 is satisfied:1102

E∞(f) = ∥f∗ −Πd,∞f∗∥∞
d→ 0.

Then, we prove the two theses point by point. Point one: for fixed d, theorem 13 gives1103

∥f(·)−φd(·)⊤θ̂n,BWR∥∞ ≤ (1+ΛOracle
µ )E∞(f)+Õ

(
φ2,D

√
D log(|X |/δ)
√
n

+
φ2
2,D log(|X |/δ)

n

)
.

As X is [−1, 1] and the feature map is Lipschitz continuous, we can get rid of the |X | by a covering1104

argument. As n→∞, the former gives1105

lim
n
∥f(·)−φd(·)⊤θ̂n,BWR∥∞ ≤ (1 + ΛOracle

µ )E∞(f).

4formally, the result holds for γ > 1/4 but, for what we are trying to prove, the validity of the statement for
γ implies its validity for every γ′ > γ, therefore we can proceed w.l.o.g.
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For µ = U([−1, 1]), theorem 14 ensured that ΛOracle
µ < C, a universal constant independent on d.1106

Therefore,1107

lim
d

lim
n
∥f(·)−φd(·)⊤θ̂n,BWR∥∞ ≤ lim

n
(1 + C)E∞(f) = 0.

Let us pass to the second thesis:1108

lim
n→∞

∥f(·)−φd(·)⊤θ̂n,OLS∥∞ ≳ d1−γ .

This follows from the fact that, for n→∞, φd(·)⊤θ̂n,OLS → Πd,µf(·) and that theorem 26 ensures1109

lim supd
∥f∗−Πd,µf

∗∥∞
d1−γ > 0.1110

1111
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