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Abstract

In this paper, we introduce a novel variation of multi-armed bandits called bandits
with ranking feedback. Unlike traditional bandits, this variation provides feedback
to the learner that allows them to rank the arms based on previous pulls, without
quantifying numerically the difference in performance. This type of feedback is
well-suited for scenarios where the arms’ values cannot be precisely measured
using metrics such as monetary scores, probabilities, or occurrences. Common
examples include human preferences in matchmaking problems. Furthermore,
its investigation answers the theoretical question on how numerical rewards are
crucial in bandit settings. In particular, we study the problem of designing no-regret
algorithms with ranking feedback both in the stochastic and adversarial settings.
We show that, with stochastic rewards, differently from what happens with non-
ranking feedback, no algorithm can suffer a logarithmic regret in the time horizon T
in the instance-dependent case. Furthermore, we provide two algorithms. The first,
namely DREE, guarantees a superlogarithmic regret in T in the instance-dependent
case thus matching our lower bound, while the second, namely R-LPE, guarantees
a regret of Õ(

√
T ) in the instance-independent case. Remarkably, we show that

no algorithm can have an optimal regret bound in both instance-dependent and
instance-independent cases. Finally, we prove that no algorithm can achieve a
sublinear regret when the rewards are adversarial.

1 Introduction

Multi-armed bandits are well-known sequential decision-making problems where a learner is given
a number of arms whose reward is unknown [Lattimore and Szepesvari, 2017]. At every round,
the learner can pull an arm and observe a realization of the reward associated with that arm, which
can be generated stochastically [Auer et al., 2002] or adversarially [Auer et al., 1995]. The central
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question in multi-armed bandits concerns how to address the exploration/exploitation tradeoff to
minimize the regret between the reward provided by the learning policy and the optimal clairvoyant
algorithm. Interestingly, multi-armed bandits come with several flavors capturing a wide range
of different applications, e.g., with delayed feedback [Vernade et al., 2017, 2020], combinatorial
constraints [Combes et al., 2015], and a continuous set of arms [Kleinberg et al., 2019].

In this paper, we introduce a novel variation of multi-armed bandits that, to the best of our knowledge,
is unexplored so far. We name the model as bandits with ranking feedback. This feedback provides
the learner with a partial observation over the rewards given by the arms. More precisely, the learner
can rank the arms based on the previous pulls they experienced, but they cannot quantify numerically
the difference in performance. Thus, the learner is not allowed to asses how much an arm is better
or worse than another. This type of feedback is well-suited for scenarios where the arms’ values
cannot be precisely measured using metrics such as monetary scores, probabilities, or occurrences,
and naturally applies to various settings, e.g., when dealing with human preferences such as in
matchmaking settings among humans and when the scores cannot be revealed for privacy or security
reasons. This latter case can be found, e.g., in online advertising platforms offering automatic bidding
services as they have no information on the actual revenue of the advertising campaigns since the
advertisers prefer not to reveal these values being sensible data for the companies. Notice that a
platform can observe the number of clicks received by an advertising campaign, but it cannot observe
the revenue associated with that campaign. Remarkably, our model poses the interesting theoretical
question whether the lack of numerical scores precludes the design of sublinear regret algorithms or
worsens the regret bounds that are achievable when numerical scores are available.

Original contributions. We study the problem of designing no-regret algorithms for bandits with
ranking feedback in both stochastic and adversarial settings. In the case of adversarial rewards, we
prove that no algorithm can achieve sublinear regret. In contrast, with stochastic rewards, we show that
ranking feedback does not preclude such a possibility. However, it worsens the guarantees in terms of
regret bound compared to the non-ranking case. In particular, in the instance-dependent case, we show
that no algorithm can achieve logarithmic regret in the time horizon (unlike the non-ranking case), and
we provide an algorithm, namely DREE (Dynamical Ranking Exploration-Exploitation), guaranteeing
superlogarithmic regret that matches such a lower bound. In the instance-independent case, a crucial
question is whether there exists an algorithm providing better regret bound compared to the one
achieved by the well-known Explore-then-Commit algorithm, which trivially guarantees Õ(T 2/3).
We positively answer this question by designing an algorithm, namely R-LPE (Ranking Logarithmic
Phased Elimination), which guarantees a regret of Õ(

√
T ) in the instance-independent case if the

rewards are Gaussian. To achieve such a result, we derive several non-standard results that allow us to
discretize Brownian motions, which are of independent interest. These two different approaches leave
open the problem of whether there exists an algorithm achieving optimal performance in both the
instance-dependent and instance-independent case. We negatively answer this question by showing
that no algorithm can achieve an optimal regret bound in both the two cases, confirming the need
of designing two distinct algorithms for the two cases. Finally, we numerically evaluate our DREE
and R-LPE algorithms in a testbed, and we compare their performance with some baselines from the
literature in different settings. We show that our algorithms dramatically outperform the baselines in
terms of empirical regret.

Related works. The field most related to bandits with ranking is preference learning, which
aims at learning the preferences of one or more agents from some observations [Fürnkranz and
Hüllermeier, 2010]. Let us remark that preference learning has recently gained a lot of attention
from the scientific community, as it enables the design of AI artifacts capable of interacting with
human-in-the-loop (HTL) environments. Indeed, human feedback may be quite misleading when it is
asked to report numerical values, while humans are far more effective at reporting ranking preferences.
The preference learning literature mainly focuses on two kinds of preference observations: pairwise
preferences and ranking. In the first case, the data observed by the learner involves preferences
between two objects, i.e., a partial preference is given to the learner. In the latter, a complete ranking
of the available data is given as feedback. Our work belongs to the latter branch. Preference learning
has been widely investigated by the online learning community, see, e.g., [Bengs et al., 2018].

Precisely, our work presents several similarities with the dueling bandits settings [Yue et al., 2012,
Saha and Gaillard, 2022, Lekang and Lamperski, 2019], where, in each round, the learner pulls two
arms and observes a ranking over them. Nevertheless, although dueling bandits share similarities
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to our setting, they present substantial differences. Specifically, in our model, the learner observes
a ranking depending on the arms they have pulled so far. In dueling bandits, the learner observes
an instantaneous comparison between the arms they have just pulled; thus, the outcome of such a
comparison does not depend on the arms previously selected, as is the case of bandits with ranking
feedback. As a consequence, while in bandits with ranking feedback the goal of the learner is to
exploit the arm with the highest mean, in dueling bandits the goal of the learner is to select the arm
winning with the highest probability. Furthermore, while we adopt the classical notion of regret used
in the bandit literature to assess the theoretical properties of our algorithms, in dueling bandits, the
algorithms are often evaluated with a suitable notion of regret, which differs from the classical one.

Dueling bandits have their reinforcement learning (RL) counterpart in the preference-based reinforce-
ment learning (PbRL), see, e.g., [Novoseller et al., 2019] and [Wirth et al., 2017]. Interestingly, PbRL
techniques differ from the standard RL approaches in that they allow an algorithm to learn from
non-numerical rewards; this is particularly useful when the environment encompasses human-like
entities [Chen et al., 2022]. Furthermore, preference-based reinforcement learning provides a bundle
of results, ranging from theory [Xu et al., 2020] to practice [Christiano et al., 2017, Lee et al., 2021].
In PbRL, preferences may concern both states and actions; contrariwise, our framework is stateless
since the rewards gained depend only on the action taken during the learning dynamic. Moreover,
the differences outlined between dueling bandits and bandits with ranking feedback still hold for
preference-based reinforcement learning, as preferences are considered between observations instead
of the empirical mean of the accumulated rewards.

Paper structure. The paper is structured as follows. In Section 2, we report the problem formu-
lation, the setting and the necessary notation. In Section 3, we study the stochastic setting, that is,
when the rewards are sampled from fixed distributions. In Section 3.1, we present the lower bound
for the instance-dependent setting. Thus, in Section 3.2, we propose our algorithm and we show that
it achieves a tight regret bound. In Section 3.3, we show a trade-off between the regret upper-bound
achieved in the instance-dependent and instance-independent case. Finally, in Section 3.4, we present
our algorithm for the instance-independent case, which achieves optimal regret bound when the
rewards are Gaussian. In Section 4, we study the adversarial setting, that is, when no statistical
assumptions are made on the rewards. Thus, we present our impossibility result, namely, no algo-
rithm can achieve sublinear regret in adversarial bandits with ranking feedback. In Appendix A and
Appendix B, we report the omitted proofs for the stochastic setting. In Appendix C, we report the
omitted proof for the adversarial setting. Finally, in Appendix D, we report the empirical evaluation
of our algorithms.

2 Problem formulation

In this section, we formally state the model of bandits with ranking feedback and discuss the learner-
environment interaction. Subsequently, we define policies and the notion of regret both in the
stochastic and in the adversarial settings.

Setting and interaction. Differently from standard bandits—see, e.g., [Lattimore and Szepesvari,
2017]—in which the learner observes the reward associated with the pulled arm, in bandits with
ranking feedback the learner can only observe a ranking over the arms based on the previous pulls.
Formally, we assume the learner-environment interaction to unfold as follows.2

(i) At every round t ∈ [T ], where T is the time horizon, the learner chooses an arm it ∈ A :=
[n], where A is the set of available arms and n = |A| < +∞.

(ii) We study both stochastic and adversarial rewards. In the stochastic setting, the environment
draws the reward rt(it) associated with arm it from a probability distribution νit , i.e.,
rt(it) ∼ νit , whereas, in the adversarial setting, rt(it) is chosen adversarially by an
opponent from a bounded set of reward functions.

(iii) There is a bandit feedback on the reward of the arm it ∈ A pulled at round t leading to the
estimate of the empirical mean of it as follows:

r̂t(i) :=

∑
j∈Wt(i)

rj(i)

Zi(t)
,

2Given n ∈ N>0 we denote with [n] := {1, . . . , n}.
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whereWt(i) := {τ ∈ [t] | iτ = i} and Zi(t) := |Wt(i)|.3 However, the learner observes
the rank over the empirical means {r̂t(i)}i∈A We denote with SA the set containing all
the possible permutations of the elements of set A. Formally, we assume that the ranking
Rt ∈ SA observed by the learner at round t is such that:

r̂t(Rt,i) ≥ r̂t(Rt,j) ∀t ∈ [T ] ∀i, j ∈ [n] s.t. i ≥ j,
whereRt,i ∈ A denotes the i-th element in the rankingRt at round t ∈ [T ].

For the sake of clarity, we provide an example to illustrate bandits with ranking feedback and the
corresponding learner-environment interaction.

Example. We consider an environment with two arms, i.e., A = {1, 2}, in which the learner
plays the first action at rounds t = 1 and t = 3 and the second action at round t = 2, so that
W3(1) = {1, 3} andW3(2) = {2}. Let r1(1) = 1 and r3(1) = 5 be the rewards when playing the
first arm at rounds t = 1 and t = 3, respectively, while let r2(2) = 5 be the reward when playing
the second arm at round t = 2. The empirical means of the two arms and resulting rankings at every
round t ∈ [3] are given by:

r̂t(1) = 1, r̂t(2) = 0 Rt = ⟨1, 2⟩ t = 1

r̂t(1) = 1, r̂t(2) = 5 Rt = ⟨2, 1⟩ t = 2

r̂t(1) = 3, r̂t(2) = 5 Rt = ⟨2, 1⟩ t = 3

.

Policies and regret. At every round t, the action played by the learner is prescribed by a policy π. In
both the stochastic and adversarial settings, we let the policy π be a randomized map from the history
of the interactionHt−1 = (R1, i1,R2, i2, . . .Rt−1, it−1) to the set of all the probability distributions
with support A. Formally, we let π : Ht−1 → ∆(A), for t ∈ [T ], such that it ∼ π(Ht−1). As it is
customary in bandits, the learner’s goal is to design a policy π minimizing the cumulative expected
regret, whose formal definition is as follows:

RT (π) = E

[
T∑
t=1

rt(i
∗)− rt(it)

]
,

where the expectation is over the randomness of both the policy and environment in the stochastic
setting, and we let i∗ ∈ argmaxi∈A µi with µi = E [νi], whereas the expectation is over the
randomness of the policy in the adversarial setting and we let i∗ ∈ argmaxi∈A

∑T
t=1 rt(i). For

the sake of simplicity, from here on, we omit the dependence on π, referring to RT (π) as RT .
The impossibility of observing the reward realizations raises several technical difficulties when
designing no-regret algorithms since the approaches adopted for standard (non-ranking) bandits do
not generalize to our case. In the following sections, we discuss how the lack of this information
degrades the performance of the algorithms when the feedback is ranking.

3 Analysis in the stochastic setting

Initially, we observe that approaches based on optimism-vs.-uncertainty, such as UCB1, might be
challenging to apply within our framework. This is because the learner lacks the information to
estimate the reward associated with an arm, making it difficult to infer a confidence bound. Therefore,
the most popular class of algorithms one can employ in bandits with ranking feedback is that of
explore-then-commit (EC) algorithms (see, e.g., Auer et al. [2002]), where the learner either exploits
a single arm or explores the others according to a deterministic or randomized exploration strategy.

In the following, we distinguish the instance-dependent case from the instance-independent one. In
particular, we provide two algorithms, each guaranteeing a sublinear regret in one of the two cases.

3.1 Instance-dependent lower bound

It is well-known that standard bandits admit algorithms guaranteeing a regret that is logarithmic in
time horizon T in the instance-dependent case. We show in this section that such a result does not

3Note that the latter definition is well-posed as long as |Wt(i)| > 0. For each i ∈ A and t ∈ [T ] such that
|Wt(i)| = 0, we let r̂t(i) = 0.
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hold when the feedback is provided as a ranking. More precisely, our result rules out the possibility
of having a logarithmic regret. However, in the next section, we prove that we can get a regret whose
dependence on T is arbitrarily close to a logarithm, thus showing that the extra cost one has to pay in
the instance-dependent case to deal with ranking feedback is asymptotically negligible in T .

Our impossibility result exploits a connection between random walks and arms’ cumulative rewards.
Formally, we define an (asymmetric) random walk as follows.

Definition 1. A random walk is a stochastic process {Gt}t∈N such that:

Gt =

{
0 t = 1

Gt−1 + ϵt t > 1
,

where {ϵt}t∈N is an i.i.d. sequence of random variables, and E[ϵt] is the drift of the random walk.

We model the cumulative reward collected by a specific arm during the learning process as a random
walk, where the drift represents the expected reward associated with that arm. Let us notice that, in
bandits where the feedback is not given as a ranking, the learner can completely observe the evolution
of the random walks, being able to observe the realizations of the reward associated with each pulled
arm. Such observations allow the learner to estimate the difference between the performance of each
pair of arms. For instance, the learner can observe whether two arms perform similarly or, instead,
whether the gap between their performances is significant. Differently, in our case, the learner only
observes the rank without quantify numerically the performance.

This loss of information raises several technical issues that are crucial, especially when the random
walks never switch. Intuitively, in bandits with ranking feedback, we can observe how close the
expected rewards of two arms are only by observing subsequent switches of their positions in the
ranking. However, there is a strictly positive probability that two random walks never switch (thus
leading to no intersection) when they have a different drift E[ϵt] and therefore we may not evaluate
how two arms are close. This is shown in the following lemma.

Lemma 1 (Separation lemma). Let Gt, G′
t be two independent random walks defined as:

Gt+1 = Gt + ϵt and G′
t+1 = G′

t + ϵ′t,

where G0 = G′
0 = 0 and the drifts satisfy E[ϵt] = p > q = E[ϵ′t]. Then:

P
(
∀t, t′ ∈ N∗ Gt/t ≥ G′

t′/t
′
)
≥ c(p, q) > 0.

The exact value of the constant c(p, q) depends only on the two means p and q, as well as the
probability distribution defining such drifts. In the simpler case of Bernoulli distributions, this
quantity can be derived in closed form, as shown in Lemma 4 in the appendix. The rationale behind
the above lemma is that when considering two random walks with different drifts, there exists a
separating line between them with a strictly positive probability. Therefore, with a non-negligible
probability, the empirical mean corresponding to the process with the higher drift upper bounds the
empirical mean of the process with the lower drift for the entire duration of the learner-environment
interaction. In bandits with ranking feedback, such a separation lemma shows that the problem
of distinguishing two different instances is harder than in the standard, non-ranking feedback case.
Before stating our result, as is customary in bandit literature, we denote with ∆i := µ∗

i − µi,
where we let i∗ ∈ argmaxi∈A µi and µi := E [νi]. Now, we can state the following result for the
instance-dependent case.

Theorem 1 (Instance-dependent lower bound). Let π be any policy for the bandits with ranking
feedback, then, for any C(·) : [0,+∞) → [0,+∞), there is {∆i}i∈[n] and a time horizon T > 0

such that RT >
∑n
i=1 C(∆i) log(T ).

To prove Theorem 1, we consider two stochastic bandit instances, each with two available arms. In
both instances, the first arms have the same distribution, while the distributions of the second arms
are slightly different. Specifically, the first arm is optimal in the first instance, and the second arm is
optimal in the second instance. Thus, if the learner employs a policy that achieves O(log(T )) in the
first instance, such a policy may result in super-logarithmic regret in the second one as a consequence
of Lemma 1.
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3.2 Instance-dependent upper bound

We introduce the Dynamical Ranking Exploration-Exploitation algorithm (DREE). The pseudo-code
is provided in Algorithm 1. As usual in bandit algorithms, in the first n rounds, a pull for each arm is
performed (Lines 2–4). At every subsequent round t > n, the exploitation/exploration tradeoff is
addressed by playing the best arm according to the received feedback unless there is at least one arm
whose number of pulls at t is smaller than a superlogarithmic function f(t) : (0,∞)→ R+.4 More
precisely, the algorithm plays an arm i at round t if it has been pulled less than f(t) times (Lines 5–6),
where ties due to multiple arms pulled less than f(t) times are broken arbitrarily. Instead, if all arms
have been pulled at least f(t) times, the arm in the highest position of the last ranking feedback is
pulled (Lines 7–9). Each round ends once the learner receives the feedback in terms of ranking over
the arms (Line 10). Let us observe that the exploration strategy of Algorithm 1 is deterministic, and
the only source of randomness concerns the realization of the arms’ rewards.

We state the following result, providing the upper regret bound of Algorithm 1 as a function of f .
Theorem 2 (Instance-dependent upper bound). Assume that the reward distribution of every arm
is 1-subgaussian. Let f : (0,∞) → R be a superlogarithmic function in t, then there is a term
C(f,∆i) for each sub-optimal arm i ∈ [n] which does not depend on T , such that Algorithm 1
satisfies RT ≤ f(T )

∑n
i=1 ∆i + log(T )

∑n
i=1 C(f,∆i).

To minimize the asymptotic dependence in T of the cumulative regret suffered by the algorithm,
we can choose, e.g., f : (0,∞) → R as f(t) = log(t)1+δ, where parameter δ > 0 is as small as
possible. However, the minimization of δ comes at the cost of increasing the terms C(f,∆i) as they
grow exponentially as δ > 0 goes to zero as long as ∆i < 1. In particular, the terms C(f,∆i) are
defined as stated in the following corollary.
Corollary 3. Let δ > 0 and f(t) = log(t)1+δ be the sperlogarithmic function used in Algorithm 1,
then we have:

C(f,∆i) =

2∆i

(
e

(
(2/∆2

i )
1/δ

)
+ 1

)
1− e−∆2

i /2

Algorithm 1 Dynamical Ranking Exploration-Exploitation
(DREE)

1: for t ∈ [T ] do
2: if t ≤ n then
3: play arm it
4: end if
5: if There is an arm i played less than f(t) times then
6: Play it = i
7: else
8: Play it = Rt−1,1

9: end if
10: Receive updated rankingRt
11: end for

We remark that the term C(f,∆i) de-
pends exponentially on ∆i, suggest-
ing that C(f,∆i) may be large even
when adopting values of δ that are not
arbitrarily close to zero. At this point,
a natural question arises. Is such an
exponential dependence with respect
to the gap ∆i unavoidable, or is it a
consequence of the kind of feedback
the learner receives? In the next sec-
tion, we answer this question.

Furthermore, let us observe that Algo-
rithm 1 satisfies important properties
in the instance-dependent stochastic
setting. More precisely, (i) it matches the instance-dependent regret lower-bound, since f(·) can be
chosen arbitrarily close to log(t), (ii) it works without requiring the knowledge of the time horizon T ,
thus being an any-time algorithm.

3.3 Instance dependent/independent trade-off

In this section, we provide a negative result, showing that no algorithm can perform well in both the
instance-dependent and instance-independent cases, thus suggesting that the two cases need to be
studied separately. Initially, we state the following result that relates to the upper regret bounds in the
two (instance-dependent/independent) cases.
Theorem 4 (Instance Dependent/Independent Trade-off). Let π be any policy for the bandits with
ranking feedback problem. If π satisfies the following properties:

4A function f(t) is superlogarithmic when lim
t→∞

f(t)
log(t)

= +∞.
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• (instance-dependent upper regret bound) RT ≤
∑n
i=1 C(∆i)T

α

• (instance-independent upper regret bound) RT ≤ nCT β

then, 2α+ β ≥ 1, where α, β ≥ 0.

Proof. (Sketch) Let p1 = 0.5, p2 = 0.5− ε, p∗2 = 0.5 + ε and consider two instances:

P :

{
ν1 = Be(p1)

ν2 = Be(p2)
P ∗ :

{
ν1 = Be(p1)

ν2 = Be(p∗2)

Clearly, the optimal arm is arm 1 in instance P , while arm 2 is optimal in P ∗. We then define the
event:

Et =

t⋂
τ=1

{Rt = ⟨1, 2⟩}.

In the first instance, Et corresponds to the optimal arm being ranked in the first position for the first t
time steps, while the opposite holds for the second instance. The main question at this point reduces
to: how many times should a policy select the arm ranked in the last position to distinguish between
the two instances? To ensure that the instance-independent regret is sublinear in the first instance,
we have to guarantee that EP [Z2(t)|Et] ≤ Ctα+η for quantity η specified in the proof. Indeed, if in
the first instance we pull the arm 2 too many times under the event Et, we may suffer a potentially
large instance-dependent regret bound. Then, we prove that if the previous consideration holds, in the
instance P ∗, we have:

Rt ≥ Ω
(
t1−2ρα

)
,

for a constant ρ close to one. This lower bound on the instance independent regret entails that
β ≥ 1− 2α, or, equivalently β + 2α ≥ 1.

From Theorem 4, we can easily infer the following impossibility result.
Corollary 5. There is no algorithm for bandits with ranking feedback achieving both subpolynomial
regret in the instance-dependent case, i.e., ∀α > 0, ∃C(·) : RT ≤

∑n
i=1 C(∆i)T

α, and sublinear
regret in the instance-independent case.

To ease the interpretation of Corollary 5, we discuss the performance of Algorithm 1 in the instance-
independent case in the following result.
Corollary 6. For every choice of δ > 0 in f(t) = log(t)1+δ, there is no value of η > 0 for which
Algorithm 1 achieves an instance-independent regret bound of the form RT ≤ O(T 1−η).

The above result shows that Algorithm 1 suffers from linear regret in T in the instance-independent
case except for logarithmic terms.

Moreover, the following corollary of Theorem 4 answers the question raised in the previous section.
We can prove that the terrible dependence on the gaps ∆i is not a feature of Algorithm 1; instead, it
cannot be avoided until the instance-dependent regret has a good order in T .
Corollary 7. Let π be any policy for the bandits with ranking feedback problem that satisfies
and instance-dependent upper regret bound of the form RT ≤

∑n
i=1 C(∆i)f(T ), where f(T ) is

sub-polynomial. Then, C(∆) is super-polynomial in 1/∆.

Proof. We prove the opposite implication, namely that if C(∆) is polynomial in 1/∆, then f(T )
cannot be is sub-polynomial in T . By assumption, in case of two arms with just one gap ∆,

RT ≤
p∑
ℓ=1

Cℓ∆
−ℓf(T ),

which implied that the instance independent regret can be bounded in the following way,

RT ≤ sup
∆>0

min

{
p∑
ℓ=1

Cℓ∆
−ℓf(T ),∆T

}

≤
p∑
ℓ=1

sup
∆>0

min
{
Cℓ∆

−ℓf(T ),∆T
}
.
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Notice that, for ∆ ≥ T−1/(ℓ+1) the first term is less than CT
ℓ

α+1 f(T ), while for ∆ ≤ T−1/(ℓ+1),
the second one is less than T

ℓ
ℓ+1 . Therefore, the full instance independent regret is bounded by:

RT ≤
p∑
ℓ=1

CℓT
ℓ

ℓ+1 f(T ),

which is polynomial in T . If, by contradiction, f(T ) were sub-polynomial, this bound would be
sublinear (growing roughly as O(T p

p−1 )), but this contradicts the result of Corollary 5.

3.4 Instance-independent upper bound

The impossibility result stated by Corollary 5 pushes for the need for an algorithm guaranteeing a
sublinear regret in the instance-independent case. Initially, we observe that the standard Explore-then-
Commit (EC) algorithm [Auer et al., 2002] can be applied, achieving a regret bound O(T 2/3) in the
instance-independent case. Let us briefly summarize the functioning of the EC algorithm. It divides
the time horizon into two phases as follows: (i) exploration phase: the arms are pulled uniformly for
the first m · n rounds, where m is a parameter of the algorithm one can tune to minimize the regret;
(ii) commitment phase: the arm maximizing the estimated reward is pulled. In the case of bandits
with ranking feedback, the EC algorithm explores the arms in the first m · n rounds and subsequently
pulls the arm in the first position of the ranking feedback received at round t = m ·n. As is customary
in standard (non-ranking) bandits, the best regret bound can be achieved by setting m = ⌈T 2/3⌉, thus
obtaining O(T 2/3). We show that we can get a regret bound better than that of the EC algorithm.
In particular, we provide the Ranking Logarithmic Phased Elimination (R-PLE) algorithm, which
breaks the barrier of O(T 2/3) guaranteeing a regret Õ(

√
T ) when neglecting logarithmic terms. Due

to the mathematical instruments involved, the proof of this regret bound only holds for the case of
Gaussian noise, as the ones presented in a similar setting by Garivier et al. [2016]. The pseudocode
of R-PLE is reported in Algorithm 2.

R-LPE algorithm. In order to proper analyze the algorithm, we need to introduce the two following
definitions. Initially, we introduce the definition of the loggrid set as follows,
Definition 2 (Loggrid). Given two real numbers a, b s.t a < b and a constant value T , we define

LG(a, b, T ) :=

{
⌊Tλjb+(1−λj)a⌋ : λj =

j

⌊log(T )⌋ , ∀j = 0, . . . , ⌊log(T )⌋
}
.

Next, we give the notion of active set, which the algorithm employs to cancel out sub-optimal arms.
Definition 3 (Filtering condition). Let S be the active set of the algorithm, at a certain timestep. We
define a timestep t fair if all active arms have been pulled the same number of times times. In any
fair timestep t, we define the active set Ft(ζ) the set of arms

Ft(ζ) :=

i ∈ S : ∀j ∈ S
t∑

τ=1 s.t. τ fair

{Rτ (i) > Rτ (j)} ≥ ζ

 .

This condition will be called filtering condition.

Initially, we observe that R-LPE differs from Algorithm 1, as it takes into account the whole history
of the process and not only the last ranking Rt received. It also requires the knowledge of T . Set
S denotes the active set of arms used by the algorithm. Initially, set S comprises all the possible
arms available in the problem (Line 1). Furthermore, the set which drives the update of the decision
space S, namely L, is initialized as the loggrid built on parameters 1/2, 1, T (Line 2). At every
round t ∈ [T ], R-LPE chooses the arm from active set S with the minimum number of pulls, namely
i s.t. Zi(t) is minimized (Line 4); ties are broken by index order. Next, the number of times arm it has
been pulled, namely Zi(t), is updated accordingly (Line 5). The peculiarity of the algorithm is that
set S changes every time the condition mini Zi(t) ∈ L is satisfied (Line 7). When the aforementioned
condition is met, the set of active arms S is filtered to avoid the exploration on sub-optimal arms.
Precisely, S is filtered given the time dependent parameter α (Line 8- 9).
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Algorithm 2 Ranking Logarithmic Phased Elimination (R-
LPE)

1: Initialize S = [n]
2: Initialize L = LG(1/2, 1, T )
3: for t ∈ [T ] do
4: Play it ∈ argmini∈S Zi(t)
5: Update Zi(t) number of times it has been pulled
6: Observe rankingRt
7: if mini∈S Zi(t) ∈ L then
8: α = log(mini∈S Zi(t))

log(T ) − 1
2

9: S = Ft(T 2α)
10: end if
11: end for

Regret bound. We state the fol-
lowing theorem providing a regret
bound to Algorithm 2 in the instance-
independent case.

Theorem 8. In the stochastic bandits
with ranking feedback setting, when
the noise is Gaussian, Algorithm 2
achieves RT ≤ 62n4 log(T )2T 1/2.

Proof. (Sketch) To prove the theorem,
we define, for every pair of indices
i, j ∈ [n], the event:

Eψij :=

{
Eij µj − µi > ψ

∅ else,
(1)

where the Eij corresponds to the event in which arm i eliminates arm j at some point in the process,
while ψ is a constant defined in the following. The probability that at least one of these events
holds is bounded (by Lemma 7 and employing a Union Bound) as P(Ψ) := P

(⋃n
i ̸=j,i,i∈[n]E

ψ
ij

)
≤

O
(
n2 log(T )2T−1/2ψ−1

)
, as their number is at most n(n− 1)/2.

Therefore, if the complement of the event Ψ holds, there exists an arm i⋆ with a gap (w.r.t. the first
arm) less than (n− 1)ψ, which is not eliminated until the last round. This is because at most n− 1
eliminations can happen, and if the complement of the event Ψ holds such eliminations concern pairs
of arms with a difference in mean of at most ψ.

Since the arm i⋆ ∈ [n] is not eliminated until the last round under the event ΨC , the probability
of event E∗

ii⋆ , corresponding to the event in which the suboptimal arm i ∈ [n] survives for more
than O(log(T )T 1/2∆−1

ii⋆ ) pulls, is bounded by 2T−1/2 thanks to Lemma 8. As a result, employing
a union bound over all possible values of i⋆, we can say that the probability that any event E∗

ii⋆

with i⋆ ∈ [n] happens is at most 2(n − 1)T−1/2. Thus, fixing ψ = ∆i/(2(n − 1)) ensures that
∆−1
ii⋆ ≥ ∆i/n, which entails P(Zi(T ) ≥ O(log(T )T 1/2∆−1

i )) ≤ O(n3 log(T )2T−1/2∆−1
i )), and

thus, it holds E[∆iZi(T )] = O(n3 log(T )2T−1/2). Finally, using the Regret Decomposition Lemma
[Lattimore and Szepesvari, 2017] we can conclude the proof. Proving the two lemmas, however, is
not trivial since it requires to see the whole process as a discretization of a biased Brownian motion,
and then applying results for this kind of stochastic processes.

At first glance, the result presented in Theorem 8 may seem unsurprising. Indeed, there are several
elimination algorithms achieving O(

√
T ) regret bounds in different bandit settings (see, for example,

[Auer and Ortner, 2010, Lattimore et al., 2020, Li and Scarlett, 2022]). Nevertheless, our setting
poses several additional challenges compared to existing ones. For instance, in our framework, it is
not possible to rely on concentration bounds, as the current feedback is heavily correlated with the
past ones. This is precisely the reason for the anomalous growth of the regret in terms of the number
of arms n: due to the extremely correlated feedback, two union bounds are necessary trough the last
proof, and this leads to an increase in the dependence of the order of n. In the impossibility of using
concentration inequalities, our analysis employs novel arguments, drawing from recent results in the
theory of Brownian Motions, which allow to properly model the particular ranking feedback.

4 Analysis in the adversarial setting

We focus on bandits with ranking feedback in adversarial settings. In particular, we show that no
algorithm provides sublinear regret without statistical assumptions on the rewards.

Theorem 9. In adversarial bandits with ranking feedback, no algorithm achieves o(T ) regret with
respect to the best arm in hindsight with a probability of 1− ϵ for any ϵ > 0.

Proof. (Sketch) The proof introduces three instances in an adversarial setting in a way that no
algorithm can achieve sublinear regret in all the three. The main reason behind such a negative

9



result is that ranking feedback obfuscates the value of the rewards so as not to allow the algorithm to
distinguish two or more instances where the rewards are non-stationary. The three instances employed
in the proof are divided into three phases such that the instances are similar in terms of rewards for
the first two phases, while they are extremely different in the third phase. In summary, if the learner
receives the same ranking when playing in two instances with different best arms in hindsight, it is
not possible to achieve a small regret in both of them.
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A Proofs of instance dependent stochastic analysis

A.1 Proof of instance dependent lower bound and lemmas

Lemma 2 (Separation lemma). Let Gt, G′
t be two independent random walks defined as:

Gt+1 = Gt + ϵt and G′
t+1 = G′

t + ϵ′t,

where G0 = G′
0 = 0 and the drifts satisfy E[ϵt] = p > q = E[ϵ′t]. Then:

P
(
∀t, t′ ∈ N∗ Gt/t ≥ G′

t′/t
′
)
≥ c(p, q) > 0.

Proof. Let us consider the random walk

G̃t+1 = G̃t + ϵt −
p+ q

2
.

Being E[ϵt− p+q
2 ] > 0, from the well-known fact that a random walk with drift is transient, we know

that there is a strictly positive probability c1(p, q) that {G̃t > 0, ∀t > 0}.
On the opposite side, we can see that the random walk

G̃′
t+1 = G̃′

t + ϵ′t −
p+ q

2

satisfies the opposite inequality, E[ϵ′t − p+q
2 ] < 0, so that, for the same reason, the event {G̃′

t <
0, ∀t > 0} has a strictly positive probability c2(p, q).

Therefore, being the two processes independent, one has

P
( ∞⋂
t,t′=1

{G̃t+1 > 0, G̃′
t′+1 < 0}

)
> 0,

which entails:

c1(p, q)c2(p, q) = P
( ∞⋂
t,t′=1

{G̃t > 0, G̃′
t′ < 0}

)
= P

( ∞⋂
t,t′=1

{Gt − t
p+ q

2
> 0, G′

t′ − t′
p+ q

2
< 0}

)
= P

( ∞⋂
t,t′=1

{Gt/t >
p+ q

2
, G′

t′/t
′ <

p+ q

2
}
)

≤ P
( ∞⋂
t,t′=1

{Gt/t > G′
t′/t

′}
)
.

which can be reformulated as in the statement.

In order to prove the lower bound, we will need the following Lemma.

Lemma 3. Let {Xn}n be a sequence of i.i.d. Bernoulli random variables. Then, for every event
E ∈ Fn, where Fn is the filtration generated by X1, . . . Xn,

PX1,...Xn∼Be(p)(E) ≤ PX1,...Xn∼Be(p′)(E)max
( p
p′
,
1− p
1− p′

)n
12



Proof. Without loss of generality, let us assume that p′ < p.

PX1,...Xn∼Be(p)(E) =

∫
{0,1}n

1E(x)

n∏
i=1

pxi(1− p)1−xidx

≤
∫
{0,1}n

1E(x)

n∏
i=1

(p/p′)xip′xi(1− p′)1−xidx (2)

≤
( p
p′

)n ∫
{0,1}n

1E(x)

n∏
i=1

p′xi(1− p′)1−xidx

=
( p
p′

)n
PX1,...Xn∼Be(p′)(E).

where Inequality (2) follows from the assumption p′ < p. The other way round can be proved
substituting p and p′.

We can now prove the following instance dependent lower bound.

Theorem 1 (Instance-dependent lower bound). Let π be any policy for the bandits with ranking
feedback, then, for any C(·) : [0,+∞) → [0,+∞), there is {∆i}i∈[n] and a time horizon T > 0

such that RT >
∑n
i=1 C(∆i) log(T ).

Proof. Let p1 = 0.5, p2 = 0.5− ε, p∗2 = 0.5 + ε. Let us consider two problems:

P :

{
ν1 = Be(p1)

ν2 = Be(p2)
P ∗ :

{
ν1 = Be(p1)

ν2 = Be(p∗2)

Clearly, the optimal arm is 1 for P and 2 for P ∗. Let us now define the following event on the
rankings received:

Et =

t⋂
τ=1

{Rt = ⟨1, 2⟩}.

The event Et can be interpreted as "up to time t, we have always observed the ranking ⟨1, 2⟩".

Let π be any policy. Then, at least one of the following is true:

• the policy is "light tail":

lim inf
t→∞

∑t
τ=1 π(pull 2|Eτ )

log(t)
= cπ < +∞.

• the policy is "heavy tailed":

lim sup
t→∞

∑t
τ=1 π(pull 2|Eτ )

log(t)
= +∞.

In this latter case, it is obvious that the regret cannot be logarithmic in t, so we will focus on
light-tailed policies.

Considering the first case, there is a sequence of times tk such that

lim
k

EP [Z2(tk)|Etk ]
log(tk)

= cπ.

Where the expectation is over the random variables of the arms following the distribution given in
(P ). Therefore, by Markov’s inequality, we have, for sufficiently large k,

∀h > 0 PP (Z2(tk) < h|Etk) ≥ 1− 2cπ log(tk)

h
.

13



Now, notice that the event Z2(tk) < h is contained in the σ−algebra generated by the first h pulls of
2 (and all the pulls of arm 1, but this is irrelevant since ν1 corresponds to the same distribution in the
two problems). Therefore, from Lemma 3 we have:

∀h > 0 PP∗(Z2(tk) < h) ≥
(0.5− ε
0.5 + ε

)h
PP (Z2(tk) < h)

≥
(0.5− ε
0.5 + ε

)h
PP (Z2(tk) < h,Etk)

=
(0.5− ϵ
0.5 + ϵ

)h
PP (Z2(tk) < h|Etk)PP (Etk).

Thus, we have

1. From the previous steps,

∀h > 0 PP (Z2(tk) < h|Etk) ≥ 1− 2cπ log(tk)

h
.

2. inft>0 PP (Et) = q > 0 thanks to Lemma 2.

The two point together entail that

∀h > 0 PP∗(Z2(tk) < h) ≥ q
(
1− 2cπ log(tk)

h

)(0.5− ϵ
0.5 + ϵ

)h
.

Here, for every ε > 0 the inequality 0.5−ε
0.5+ε ≥ 1− 4ε holds, so that

∀h > 0
(0.5− ε
0.5 + ε

)h
≥
(
1− 4ε

)h
,

therefore, taking h = 4cπ log(tk), we have:

P∗
P (Z2(tk) < 2cπ log(tk)) ≥

q

2
e4cπ log(tk) log(1−4ε)

≥ q

2
e−4cπ log(tk)4ε

=
q

2
tk

−4cπ4ε.

If we then put ε < 1
17cπ

, we have this lower bound on the regret in case of instance P ∗:

Rtk |∼P∗ ≥ εEP∗ [(tk − Z2(tk))]

≥ ε(tk − 2cπ log(tk))P∗
P (Z2(tk) < 2cπ log(tk))

≥ 1

2
εtkP∗

P (Z2(tk) < 2cπ log(tk))

≥ q

4
εtk

−16/17tk =
q

4
εtk

1/17.

which grows polynomially with time. Therefore, whichever the value of C(∆i) (which is C(ε) in
this case), we can always find T in the sequence tk such that

Rt|∼P∗ ≥ q

4
εt1/17 > C(ε) log(t).

A.2 Proof of instance dependent upper bound

Theorem 2 (Instance-dependent upper bound). Assume that the reward distribution of every arm
is 1-subgaussian. Let f : (0,∞) → R be a superlogarithmic function in t, then there is a term
C(f,∆i) for each sub-optimal arm i ∈ [n] which does not depend on T , such that Algorithm 1
satisfies RT ≤ f(T )

∑n
i=1 ∆i + log(T )

∑n
i=1 C(f,∆i).
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Proof. Let i∗ ∈ [n] be the optimal arm, and let Zi(t) the number of pulls of arm i up to time t. For
any sub-optimal arm ai, we have

E[Zi(t)] =
t∑

τ=1

P(Iτ = i) (3)

=

t∑
τ=1

P(Iτ = i, Zi(τ − 1) < f(τ)) +

t∑
τ=1

P(Iτ = i, Zi(τ − 1) ≥ f(τ)), (4)

where we let Iτ be the arm pulled at time τ ∈ [T ]. We split the proof in two parts, providing a bound
for each term defining Equation (4).

Claim 1: The first term of Equation (4) is bounded by f(t). indeed, notice that if:

t∑
τ=1

1{Iτ = i, Zi(τ − 1) < f(τ)} ≥ f(t),

then, there is t0 ≤ t such that Zi(t0) = f(t)− 1. Thus, we could rewrite the latter term as follows:

t0∑
τ=1

1{Iτ = i, Zi(τ − 1) < f(τ)}+
t∑

τ=t0+1

1{Iτ = i, Zi(τ − 1) < f(τ)}

By definition, the first sum is bounded by f(t), while the second one is bounded by

t∑
τ=t0+1

1{Iτ = i, Zi(τ − 1) < f(t)} = 0.

since, for τ > t0, Zi(τ − 1) ≥ f(t).
Claim 2: The second term is bounded by C(∆i) log(t) for some C(∆i). We know, by design of the
algorithm, that the arm ai can be pulled only if:

1. It has the highest empirical mean.

2. Every other arm has been pulled at least f(t) times, including arm i∗.

In particular, defining the event:
Ei,t := {Zi(t) ≥ f(t)}

we have:
P(Iτ = i, Zi(τ − 1) ≥ f(τ)) ≤ P(X̄i,τ > X̄i∗,τ , Ei,t, Ei∗,t)

which can be true only if at least one of the following holds:

1. X̄i,τ > µi + ∆i/2, which, intersected with Ei,τ , by Hoeffding’s inequality is true with
probability at most:

P(X̄i,τ > µi +∆i/2, Ei,τ ) ≤
∞∑

y=f(τ)

P(X̄i,τ > µi +∆i/2, Zi(τ) = y)

≤
∞∑

y=f(τ)

e−
y∆2

i
2 =

e−
f(τ)∆2

i
2

1− e−∆2
i /2

2. X̄i∗,τ < µ∗ +∆i/2, which, intersected to Ei∗,τ , by Hoeffding’s inequality is also true with
the same probability of before.

Therefore, we have proved that:
t∑

τ=1

P(Iτ = i, Zi(τ − 1) ≥ f(τ)) ≤ 2(1− e−∆2
i /2)−1

t∑
τ=1

e−
f(τ)∆2

i
2 ,
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which grows slower than log(t). Indeed, being f(·) superlogathmic, we have:

lim
t→∞

te−
f(t)∆2

i
2 = lim

t→∞
te− log(t)

f(t)∆2
i

2 log(t) = lim
t→∞

t

(
1

t

) f(t)∆2
i

2 log(t)

= 0.

Thus, for every c > 0, we can find t0 satisfying e−
f(t)∆2

i
2 ≤ c

t ∀t ≥ t0, so that:

lim
t→∞

∑t
τ=1 e

− f(τ)∆2
i

2

c log(t)
≤ lim
t→∞

∑t
τ=1 e

− f(τ)∆2
i

2

c
∑t
τ=1

1
τ

≤ lim
t→∞

∑t0
τ=1 e

− f(τ)∆2
i

2

c
∑t
τ=1

1
τ︸ ︷︷ ︸

→0

+

∑t
τ=t0

e−
f(τ)∆2

i
2

c
∑t
τ=t0

1
τ︸ ︷︷ ︸

≤1

≤ 1.

This fact allows us to state (since a convergent sequence is always bounded) that:

C0(∆i) = 2(1− e−∆2
i /2)−1 sup

t>1

∑t
τ=1 e

− f(τ)∆2
i

2

log(t)
< +∞,

proving that for every suboptimal arm i

E[Zi(t)] ≤ f(t) + C0(∆i) log(t)

To conclude the proof, it is sufficient to redefine C(∆i) := ∆iC0(∆i) and see that:

Rt =

N∑
i=1

∆iE[Zi(t)].

Corollary 10. Let δ > 0 and f(t) = log(t)1+δ be the superlogarithmic function used in Algorithm 1,
then we have:

C(f,∆i) =

2∆i

(
e

(
(2/∆2

i )
1/δ

)
+ 1

)
1− e−∆2

i /2

Proof. Let t0 ∈ N be smallest integer such that:

e−
1
2 log(t)1+δ∆2

i ≤ 1

t
, ∀t ≥ t0 > 1.

By rearranging the latter inequality we have that:

t0 = ⌈e
(
(2/∆2

i )
1/δ

)
⌉.

From the previous proof, it was known that C(∆i, f) = ∆iC0(∆i), where

C0(∆i) = 2(1− e−∆2
i /2)−1 sup

t>1

∑t
τ=1 e

− f(τ)∆2
i

2

log(t)
.

Therefore, we have for this specific choice of f ,

C0(∆i) log(t) ≤ 2(1− e−∆2
i /2)−1

t∑
τ=1

e−
f(τ)∆2

i
2

≤ 2(1− e−∆2
i /2)−1

∑t
τ=1 e

− f(τ)∆2
i

2

log(t)
log(t)

≤ 2(1− e−∆2
i /2)−1

∑t0
τ=1 e

− f(τ)∆2
i

2

log(t)
+

∑t
τ=t0

e−
f(τ)∆2

i
2∑t

τ=t0
1
τ

 log(t)
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Where the last step is due to the fact that for t0 > 2 we have
∑t
τ=t0

1
τ ≤ log(t). From this point, we

can note that in the fraction
∑t

τ=t0
e−

f(τ)∆2
i

2∑t
τ=t0

1
τ

for fixed τ , each term of the upper sum e−
f(τ)∆2

i
2 is less

or equal than each term of the lower 1
τ . Therefore, we have∑t

τ=t0
e−

f(τ)∆2
i

2∑t
τ=t0

1
τ

≤ 1.

With this consideration, we are able to conclude:

C0(∆i) ≤ 2(1− e−∆2
i /2)−1

∑t0
τ=1 e

− f(τ)∆2
i

2

log(t)
+

∑t
τ=t0

e−
f(τ)∆2

i
2∑t

τ=t0
1
τ


≤ 2(1− e−∆2

i /2)−1

(
t0

log(t)
+ 1

)
≤ 2(1− e−∆2

i /2)−1 + 2(1− e−∆2
i /2)−1e

(
(2/∆2

i )
1/δ

)
.

Where in the last step we have used the fact that log(t) > 1 for t > 2. Recollecting all the terms we
have that:

C(∆i, log(t)
1+δ) = ∆iC0(∆i, log(t)

1+δ) ≤ 2∆i(1− e−∆2
i /2)−1(e

(
(2/∆2

i )
1/δ

)
+ 1),

concluding the proof.

B Proofs in the instance independent stochastic analysis

B.1 Instance dependent/independent trade-off

Lemma 4. Let us define a random walk

Gt+1 = Gt + ϵt ϵt =

{
1 p

−1 1− p .

where G0 = 1, with p = 1/2 + ∆/2 > 0.5 (for ∆ ∈ (0, 1)). Then, we have

P

( ∞⋃
t=1

{Gt ≤ 0}
)

=

(
1−∆

1 +∆

)
.

Proof. Define
fn = P(G0 = n, ∃t : Gt = 0)

which satisfies, for n ≥ 0:
fn = pfn−1 + (1− p)fn+1

with fn = 1 for n ≤ 0. The equation corresponding to the aforementioned dynamical system is:

(1− p)λ2 − λ+ p = 0

which has two solutions:

λ =
1±

√
1− 4p(1− p)
2(1− p)

Thus, we obtain, ∀n > 0

fn = A

(
1 +

√
1− 4p(1− p)
2(1− p)

)n
+B

(
1−

√
1− 4p(1− p)
2(1− p)

)n

17



where A = 0 (otherwise, the equation does not define a probability) and B = 1 (since f1 → 1 for
∆→ 0). Therefore, from the definition of p:

fn =

(
1−

√
1− 4p(1− p)
2(1− p)

)n

=

(
1−

√
1− 4(1/2−∆/2)(1/2 + ∆/2)

1 + ∆

)n
=

(
1−∆

1 +∆

)n
.

for n = 1 we have the result.

Theorem 4 (Instance Dependent/Independent Trade-off). Let π be any policy for the bandits with
ranking feedback problem. If π satisfies the following properties:

• (instance-dependent upper regret bound) RT ≤
∑n
i=1 C(∆i)T

α

• (instance-independent upper regret bound) RT ≤ nCT β

then, 2α+ β ≥ 1, where α, β ≥ 0.

Proof. Let p1 = 0.5, p2 = 0.5− ε, p∗2 = 0.5 + ε. Let us consider two problems:

P :

{
ν1 = Be(p1)

ν2 = Be(p2)
P ∗ :

{
ν1 = Be(p1)

ν2 = Be(p∗2)

Clearly, the optimal arm is 1 for P and 2 for P ∗. Let us now define the event:

Et =

t⋂
τ=1

{Rt = ⟨1, 2⟩}.

By assumption, policy π has a sub-tα instance-dependent regret, therefore,

∀η > 0, lim sup
t→∞

∑t
τ=1 π(pull 2|Eτ )

tα+η
= 0,

otherwise we would have an instance dependent regret of order tα+η in the simple case of p1 =
1, p2 = 0. This means that:

lim sup
t

EP [Z2(t)|Et]
tα+η

= 0 =⇒ ∃C > 0 ∀t > 0 : EP [Z2(t)|Et] ≤ Ctα+η.

Where EP is the expectation over the random variables of the arms following the distribution given
in (P ). Therefore, by Markov’s inequality, we have,

PP (Z2(t) > 2Ctα+η|Et) ≤
EP [Z2(t)|Et]

2Ctα+η
≤ Ctα+η

2Ctα+η
≤ 1

2
.

Now, note that for every h > 0 the event Z2(t) < h is contained in the σ−algebra generated by the
first h pulls of arm 2 (and all the pulls of arm 1, but this is irrelevant since arm 1 corresponds to the
same distribution in the two problems). Therefore, thanks to Lemma 3 we have:

∀h > 0 PP∗(Z2(t) ≤ h) ≥
(0.5− ε
0.5 + ε

)h
PP (2(t) ≤ h)

≥
(0.5− ε
0.5 + ε

)h
PP (T2(t) ≤ h,Et)

=
(0.5− ε
0.5 + ε

)h
PP (T2(t) ≤ h|Et)PP (Et).
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By the previous step, we have PP (Z2(t) ≤ 2Ctα+η|Et) ≥ 1/2, so that:

PP∗(Z2(t) ≤ 2Ctα+η) ≥ 1

2

(0.5− ε
0.5 + ε

)2Ctα+η

PP (Et),

while, thanks to Lemma 4, we have PP (Et) ≥ 1− 1−ε
1+ε ≥ 2ε, meaning that:

PP∗(Z2(t) ≤ 2Ctα+η) ≥ 1

2

(0.5− ε
0.5 + ε

)2Ctα+η
2ε

1 + ε
.

At this point we are using this result to provide a lower bound for the regret in the instance independent
case. Analyzing the instance independent regret, by definition we have to fix t as time horizon and let
the arm gap ε depend on t.

Let us now fix ρ > 1. With the choice ε = t−ρα, we have

PP∗(Z2(t) ≤ 2Ctα+η) ≥ 1

2

(0.5− t−ρα
0.5 + t−ρα

)2Ctα+η

2t−ρα

≥ 1

2

(
1− 4t−ρα

)2Ctα+η
2t−ρα

1 + t−ρα

≥
(
1− 4t−ρα

)2Ctα+η
t−ρα

2
. (5)

At this point if we choose η = α(ρ− 1)/2, the following fact holds:

lim
t→∞

(
1− 4t−ρα

)2Ctα+η

= lim
y→0+

(
1− 4y

)Cy−(α+η)
ρα

= lim
y→0+

(
1− 4y

)Cy−α(1/2+ρ/2)
ρα

= lim
y→0+

(
1− 4y

)Cy−(1/2+ρ/2)
ρ

where in the first equality we substituted y = t−ρα. Here, y
−(1/2+ρ/2)

ρ = y−1 · y ρ−1
2ρ , where the

second exponent is strictly positive.

lim
t→∞

(
1− 4t−ρα

)2Ctα+η

= lim
y→0+

((
1− 4y

)−y)Cy ρ−1
2ρ

= lim
y→0+

(1/e4)Cy
ρ−1
2ρ

= 1.

This limit shows that there is cρ > 0 such that:(
1− 4t−ρα

)2Ctα+η

≥ cρ ∀t sufficiently big.

Substituting this property in the previously found Equation (5), we get:

PP∗(Z2(t) ≤ 2Ctα(1/2+ρ/2)) ≥ cρ
2
t−ρα,

holding for every ρ > 0 and sufficiently big t.

This proves that, with ε = t−ρα :

Rt|∼P∗ ≥ ε(t− 2Ctα(1/2+ρ/2))P∗
P (Z2(t) ≤ 2Ctα(1/2+ρ/2))

≥ 1

2
t · cρ

2
t−2ρα =

cρ
4
t1−2ρα ∀t sufficiently big.

Therefore, for β ≤ 1− 2ρα it is not possible to have an upper bound for the instance independent
regret. Since this is valid for every ρ > 1, we can also extend the result to any β < 1− 2α, which
leads to the conclusion that the necessary condition to satisfy both:
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• (Instance Dependent regret bound)

Rt ≤
n∑
i=1

C(∆i)t
α ∀t > 0

• (Instance Independent regret bound)

Rt ≤ nCtβ ∀t > 0

for the same policy π is
2α+ β ≥ 1.

B.2 Proofs of instance independent regret upper bound

To understand the tractation of the instance independent regret analysis, we will need some results
from the theory of stochastic processes. We devote the following subsections to develope all the
results required to prove the regret bound on the algorithm.

B.2.1 Discretizing the Brownian motion

In this section, we prove some results about the relationship between Random Walk Gi and Brownian
Motion Bt, that will be crucial in the proof of the regret bound. For this scope, we will introduce this
quantity

|Bt + tµ0 < η| =
∫ 1

0

1(−∞,η)(τ)dτ,

corresponding to the Lebesgue measure of the set {t ∈ [0, 1] : Bt + tµ0 < η}.
We start with a lemma that bounds the increments in a standard brownian Motion.
Lemma 5. Let (Bt)t∈[0,1] be a standard Brownian motion. Define

∀i ∈ {0, . . . , n− 1}, Ii := [i/n, (i+ 1)/n].

Then, for every η ≥ 0,

P

(
sup

i∈{0,...,n−1}
(sup
t∈Ii

Bt −Bi/n) ≥ η
)

= P
(

inf
i∈{0,...,n−1}

( inf
t∈Ii

Bt −Bi/n) ≤ −η
)
≤

2
√
n exp

(
−η2n2σ2

)
η/σ
√
2π

.

Proof. Indeed, the Brownian motion satisfies:

P

(
sup

i∈{0,...,n−1}
(sup
t∈Ii

Bt −Bi/n) ≥ η
)

= P

(
n−1⋃
i=0

sup
t∈Ii

Bt −Bi/n > η

)

≤
n−1∑
i=0

P
(
sup
t∈Ii

Bt −Bi/n > η

)

=

n−1∑
i=0

2P(B(i+1)/n −Bi/n > η)

=

n−1∑
i=0

2P(N (0, σ2/n) > η)

≤
n−1∑
i=0

2 exp
(
−η2n2σ2

)
η/σ
√
2nπ

≤
2
√
n exp

(
−η2n2σ2

)
η/σ
√
2π

.

where the third equality holds from the reflection principle (see [Baldi, 2017]), and last inequality
holds since it is well-known that P(N (0, β2) > y) ≤ exp(−y2/2β2)

y/β
√
2π

for tail bound on Gaussian
distributions.
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In the exact same way, we can prove that

P
(

inf
i∈{0,...,n−1}

( inf
t∈Ii

Bt −Bi/n) ≤ −η
)
≤

2
√
n exp

(
−η2n2σ2

)
η/σ
√
2π

.

Together, the two results imply the thesis.

We are now ready to prove a theorem that links the Brownian Motion and a Random Walk in term of
the probability that each of them stays in the interval [0,∞).

Lemma 6 (Discretization lemma). Let (Gi)i∈{0,...n−1} be a Gaussian 0-mean unit variance random
walk, and µ ∈ R, and (Bt)t∈[0,1] a standard Brownian motion. Then, for every s ∈ (0, 1) we have,

P (|Bt + tµ0 > η| > s)−P (n, η) ≤ P

(
n−1∑
i=0

1(0,∞) (Gi + iµ) > sn

)
≤ P (|Bt + tµ0 > −η| > s)+P (n, η)

and

P (|Bt + tµ0 ≤ η| ≤ s)−P (n, η) ≤ P

(
n−1∑
i=0

1(−∞,0] (Gi + iµ) ≤ sn
)
≤ P (|Bt + tµ0 ≤ −η| ≤ s)+P (n, η)

with P (n, η) =
2
√
n exp(−η2n/2)

η
√
2π

and µ0 =
√
nµ.

Proof. We only prove the first part, as the second one follows trivially by substituting s ← 1 − s,
µ← −µ, Gi ← −Gi, Bt ← −Bt.
Let (Bt)t∈[0,1] be a standard Brownian motion. Define

∀i ∈ {0, . . . , n− 1}, Ii := [i/n, (i+ 1)/n].

Let us set
µ0 =

√
nµ.

With this definition, we have the following set inclusions, for any s ∈ [0, 1] and η > 0:

{|Bt + tµ0 > η| > s} =
{∫ 1

0

1(η,∞)(Bτ + τµ0) dτ > s

}
=

{
n−1∑
i=0

∫
Ii

1(η,∞)(Bτ + τµ0) dτ > s

}

⊆
{
n−1∑
i=0

supτ∈Ii1(η,∞)(Bτ + τµ0) > sn

}

⊆
{
n−1∑
i=0

1(0,∞)

(
Bi/n +

i

n
µ0

)
> sn

}
∪
{

sup
i∈{0,...,n−1}

(
sup
t∈Ii

Bt −Bi/n
)
≥ η

}
.

Moreover, it is also true that, using the same steps

{|Bt + tµ0 > −η| > s} =
{∫ 1

0

1(−η,∞)(Bτ + τµ0) dτ > s

}
⊇
{
n−1∑
i=0

1(0,∞)

(
Bi/n +

i

n
µ0

)
> sn

}
∩
{

inf
i∈{0,...,n−1}

( inf
t∈Ii

Bt −Bi/n) ≥ −η
}
.
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Now, note that the random variable Bi/n, for i = 1, ..., n has the same distribution of Gi/
√
n, so that

P

(
n−1∑
i=0

1(0,∞)

(
Bi/n +

i

n
µ0

)
> sn

)
= P

(
n−1∑
i=0

1(0,∞)

(√
nBi/n +

i√
n
µ0

)
> sn

)

= P

(
n−1∑
i=0

1(0,∞) (Gi + iµ) > sn

)
.

Therefore, by union bound:

P (|Bt + tµ0 > η| > s) ≤ P

(
n−1∑
i=0

1(0,∞) (Gi + iµ) > sn

)
+P

(
sup

i∈{0,...,n−1}

(
sup
t∈Ii

Bt −Bi/n
)
≥ η

)
,

and

P (|Bt + tµ0 > −η| > s) ≥ P

(
n−1∑
i=0

1(0,∞) (Gi + iµ) > sn

)
−P
(

inf
i∈{0,...,n−1}

( inf
t∈Ii

Bt −Bi/n) ≤ −η
)
.

The proof is completed applying lemma 5 and reordering the terms.

For our setting, it is convenient to state a corollary of the previous result that will be used in the next
proofs.

Corollary 11. Let (Gi)i∈{0,...n−1} be a Gaussian 0-mean unit variance random walk, and µ ∈ R.
Then, for every s ∈ (0, 1) we have,

P

(
n−1∑
i=0

1(−∞,0] (Gi + iµ) ≤ sn
)
∈

[
P
(∣∣∣∣Bt + tµ0 ≤

2 log(n)√
n

∣∣∣∣ ≤ s)− √
2√

πn log(n)
, P

(∣∣∣∣Bt + tµ0 ≤ −
2 log(n)√

n

∣∣∣∣ ≤ s)+

√
2√

πn log(n)

]
,

where µ0 =
√
nµ.

Proof. It is sufficient to make the substitution

η =
2 log(n)√

n
,

in the previous lemma. Indeed, we have

P (n, η) =
2
√
n exp

(
−η2n/2

)
η
√
2π

=
2
√
n exp

(
− log(n)2

)
log(n)√

n

√
2π

=
2n exp

(
− log(n)2

)
log(n)

√
2π

=

√
2√

πn log(n)
.
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B.2.2 Proofs of filtering inequalities

All the proof of this subsections will be based on the following very powerful result, which studies
the time spent by a Brownian Motion with drift in the half-line [0,∞).
Theorem 12 (Takács [1996]). Let Bt be a standard Brownian motion on t ∈ [0, 1], and let us note as
| · | the Lebesgue measure of a set. For µ0 ∈ R and η > 0, we have

P (|Bt + tµ0 ≤ η| ≤ s) = 2

∫ s

0

[
φ(µ0

√
1− τ)√

1− τ + µ0Φ(µ0

√
1− τ)

]
×[

φ(η/
√
τ − µ0

√
τ)√

τ
− µ0e

2µ0ηΦ(−η/√τ − µ0

√
τ)

]
dτ,

where

φ(x) :=
1√
2π
e−x

2/2 Φ(x) :=

∫ x

−∞
φ(u) du.

Thanks to the previous theorem, we can prove the following crucial results.
Theorem 13. Let T be a sufficiently large constant. Let (Gi)i∈{0,...n−1} be a Gaussian 0-mean unit
variance random walk, and µ ∈ R. If µ ≥ CT−α, for some α ∈ (0, 1/2) and C = 4 log(T ), then
setting n = ⌈T 1/2+α⌉ we have

P

(
n−1∑
i=0

1(−∞,0] (Gi + iµ) ≤ T 2α

)
≥ 1− 2T−1/2.

Proof. In the rest of the proof, we will assume, for ease of notation, that T is such that T 1/2+α an
integer, so that n = T 1/2+α. This is done without loss of generality, since substituting n with n+ 1
leads to a negligble difference for T sufficiently big. Applying the discretization corollary 11, we
have that for every s ∈ (0, 1)

P

(
n−1∑
i=0

1(−∞,0] (Gi + iµ) ≤ sn
)
≥ P

(∣∣∣∣Bt + tµ0 ≤
2 log(n)√

n

∣∣∣∣ ≤ s)− √
2√

πn log(n)
, (6)

where µ0 =
√
nµ. Therefore, by assumption,

µ0 =
√
nµ ≥ (T 1/2+α)1/2CT−α = CT 1/4−α/2.

At this point, we can apply Theorem 12 to have, for any η > 0,

P (|Bt + tµ0 ≤ η| ≤ s) = 2

∫ s

0

(
ϕ(µ0

√
1− τ)√

1− τ + µ0Φ(µ0

√
1− τ)

)
×
(
ϕ

(
η − µ0τ√

τ

)
1√
τ
− µ0e

2µ0ηΦ

(−η − µ0τ√
τ

))
dτ

which means that

P (|Bt + tµ0 ≤ η| ≤ s) = 1− 2

∫ 1

s

ϕ(µ0

√
1− τ)√

1− τ︸ ︷︷ ︸
(1)

+µ0Φ(µ0

√
1− τ)︸ ︷︷ ︸

(2)



×

ϕ
(
η − µ0τ√

τ

)
1√
τ︸ ︷︷ ︸

(3)

−µ0e
2µ0ηΦ

(−η − µ0τ√
τ

)
︸ ︷︷ ︸

(4)

 dτ.

Here, we have to consider that
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• η = 2 log(n)√
n
≤ 2 log(T )T−α/2−1/4

• µ0 ≥ CT 1/4−α/2.

Moreover, to have the thesis, we are interested in a value of s such that sn = T 2α, corresponding to
T−1/2+α. Therefore, in the interval [T−1/2+α, 1], we have

1. Consider term (3):

ϕ

(
η − µ0τ√

τ

)
1√
τ
≤ ϕ

(
η − µ0T

−1/2+α

T−1/4+α/2

)
1

T−1/4+α/2

= ϕ
(
ηT 1/4−α/2 − µ0T

−1/4+α/2
) 1

T−1/4+α/2
.

Here, since η = 2 log(n)√
n

≤ 2 log(T )T−α/2−1/4, the part ηT 1/4−α/2 is bounded by
2 log(T ).

Instead, µ0T
−1/4+α/2 ≥ CT 1/4−α/2T−1/4+α/2 = C.

2. Term (4) is non-negative.

Therefore, for C = 4 log(T ), we have that in the interval [T−1/2+α, 1]

(3) + (4) ≤ ϕ (2 log(T )) 1

T−1/4+α/2
=

1√
2πT−1/4+α/2

e−2 log(T )2 ≤ T−1

√
2π
.

With this inequality, we have

P
(
|Bt + tµ0 ≤ η| ≤ T−1/2+α

)
= 1− 2

T−1

√
2π

∫ 1

T−1/2+α

(
ϕ(µ0

√
1− τ)√

1− τ + µ0Φ(µ0

√
1− τ)

)
dτ

≥ 1− 2
T−1

√
2π

∫ 1

T−1/2+α

1√
2π(1− τ)

+ |µ0|dτ

≥ 1− 2
T−1

√
2π

∫ 1

0

1√
2π(1− τ)

+ |µ0|dτ

= 1− 2
T−1

√
2π

(√
2√
π
+ µ0

)
.

At this point, knownig from the assumptions that n < T , we have µ0 ≤
√
T , which implies

P
(
|Bt + tµ0 ≤ η| ≤ T−1/2+α

)
≥ 1− T−1/2

π
.

Substituting this result into Equation 6, we get, for s = T−1/2+α and n ≥ T 1/2+α

P

(
n−1∑
i=0

1(−∞,0] (Gi + iµ) < T 2α

)
≥ 1− T−1/2

π
−

√
2√

πT 1/2+α log(T 1/2+α)

≥ 1− 2T−1/2.

The second result is the following
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Theorem 14. Let T be a sufficiently large constant. Let (Gi)i∈{0,...n−1} be a Gaussian 0-mean
unit variance random walk, and µ ∈ R such that µ ≤ −CT−θ, for some θ ∈ (0, 1/2) and
C = 2

√
log(T ) + 2. Then, for any α ∈ (0, 1/2), setting n = ⌊T 1/2+α⌋ we have

P

(
n−1∑
i=0

1(−∞,0] (Gi + iµ) ≤ T 2α

)
≤ 3T−1/2+θ.

Proof. In the rest of the proof, we will assume, for ease of notation, that T is such that T 1/2+α an
integer, so that n = T 1/2+α. This is done without loss of generality, since substituting n with n+ 1
leads to a negligble difference for T sufficiently large. Applying the discretization corollary 11, we
have that for every s ∈ (0, 1)

P

(
n−1∑
i=0

1(−∞,0] (Gi + iµ) ≤ sn
)
≤ P

(∣∣∣∣Bt + tµ0 ≤ −
2 log(n)√

n

∣∣∣∣ ≤ s)+

√
2√

πn log(n)
, (7)

where µ0 =
√
nµ. Therefore, by assumption,

µ0 =
√
nµ ≤ −(T 1/2+α)1/2CT−θ = −CT 1/4+α/2−θ.

Differently from the previous proof, here we cannot directly apply Theorem 12, since η = − 2 log(n)√
n

<

0.

Still, we can say that

P
(∣∣∣∣Bt + tµ0 ≤ −

2 log(n)√
n

∣∣∣∣ ≤ s) = P
(∣∣∣∣−Bt − tµ0 >

2 log(n)√
n

∣∣∣∣ ≤ s)
= P

(∣∣∣∣−Bt − tµ0 ≤
2 log(n)√

n

∣∣∣∣ > 1− s
)
.

At this point, we set η = 2 log(n)√
n

, µ̃0 = −µ0 and Bt = −Bt (it is not necessary to rename it since its
distribution is symmentric). In this way we can apply Theorem 12 having that the previous probability
corresponds to

P (|Bt + tµ̃0 ≤ η| > 1− s) = 2

∫ 1

1−s

ϕ(µ̃0

√
1− τ)√

1− τ︸ ︷︷ ︸
(1)

+ µ̃0Φ(µ̃0

√
1− τ)︸ ︷︷ ︸

(2)



×

ϕ
(
η − µ̃0τ√

τ

)
1√
τ︸ ︷︷ ︸

(3)

− µ̃0e
2µ0ηΦ

(−η − µ̃0τ√
τ

)
︸ ︷︷ ︸

(4)

 dτ.

Here, we have to consider that

• η = 2 log(n)√
n
≤ 2 log(T )T−α/2−1/4

• µ̃0 ≥ CT 1/4+α/2−θ.

Moreover, to have the thesis, we are interested in a value of s such that sn = T 2α, corresponding to
T−1/2+α.

Here, it is convenient to divide the proof in two cases, depending on the sign of 1/4 + α/2− θ.
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1. Assume (1/4 + α/2− θ > 0). Then, considering term (3) we have that for τ ∈ [1/2, 1]

(3) ≤ ϕ
(
η − µ̃0τ√

τ

)
1√
τ
≤
√
2ϕ
(√

2η − µ̃0/
√
2
)
.

Moreover, since term (4) is nonnegative we also have

(3) + (4) ≤
√
2ϕ
(√

2η − µ̃0/
√
2
)
=

1√
π
e−(

√
2η−µ̃0/

√
2)2/2.

Being 1/4 + α/2− θ > 0 and η < 1, the exponent is less than −(
√
2− C/

√
2)2/2. This

means that for C = 2
√
log(T ) + 2 the full term is bounded by

(3) + (4) ≤ 1√
π
e−(

√
2−C/

√
2)2/2 =

1√
π
e−(
√

2 log(T ))2/2 =
T−1

√
π
.

Substituting this inequality, we get

P
(
|Bt + tµ̃0 ≤ η| > 1− T−1/2+α

)
≤ 2T−1

√
π

∫ 1

1−T−1/2+α

(
ϕ(µ̃0

√
1− τ)√

1− τ + µ̃0Φ(µ̃0

√
1− τ)

)
dτ

≤ 2T−1

√
π

∫ 1

1−T−1/2+α

1√
2π(1− τ)

+ |µ̃0|dτ

≤ 2T−1

√
π

(2 + T−1/2+αµ̃0) ≤
6T−1

√
π
.

This quantity is of course less than T−θ, since θ ∈ (0, 1/2) by assumption

2. Assume (1/4+α/2− θ < 0). In this case, we have, being µ̃0 ≥ 0, the following inequality

P (|Bt + tµ̃0 ≤ η| > 1− s) ≤ P (|Bt ≤ η| > 1− s) .

This simplified form leads to

P (|Bt + tµ̃0 ≤ η| > 1− s) ≤ 2

∫ 1

1−s

ϕ(0)√
1− τ ϕ

(
η√
τ

)
1√
τ
dτ

≤ 2

∫ 1

1−s

ϕ(0)√
1− τ ϕ (0)

1√
τ
dτ

=
1

π

∫ 1

1−s

1√
τ(1− τ)

dτ.

Since in our case s = T−1/2+α < 1/2, this can be further simplified as

P (|Bt + tµ̃0 ≤ η| > 1− s) ≤ 1

π

∫ 1

1−s

1√
τ(1− τ)

dτ

=
2

π

∫ 1

1−s

1√
1− τ dτ

y=1−τ
=

2

π

∫ s

0

1√
y
dy =

4

π

√
s.

This leads to

26



P
(
|Bt + tµ̃0 ≤ η| > 1− T−1/2+α

)
≤ 4

π
T−1/4+α/2.

By assumption, 1/4 + α/2− θ < 0 the exponent is −1/4 + α/2 < T−1/2+θ. Therefore,
we have

P
(
|Bt + tµ̃0 ≤ η| > 1− T−1/2+α

)
≤ 4

π
T−1/2+θ.

Thus, we have proved that in both cases

P (|Bt + tµ̃0 ≤ η| > 1− s) ≤ 4

π
T−1/2+θ.

Finally, applying Equation (7) and substituting the value of n, we get

P

(
n−1∑
i=0

1(−∞,0] (Gi + iµ) ≤ T 2α

)
≤ 4

π
T−1/2+θ +

√
2√

πT 1/2+α log(T 1/2+α)
,

which implies

P

(
n−1∑
i=0

1(−∞,0] (Gi + iµ) ≤ T 2α

)
≤ 3T−1/2+θ.

B.2.3 Regret bound

Before the actual proof, we are stating a simple proposition about the structure of the loggrid, which
will ease the next computations.
Proposition 15. Let

LG(1/2, 1, T ) :=

{
⌊Tλj+(1−λj)/2⌋ : λj =

j

⌊log(T )⌋ , ∀j = 0, . . . , ⌊log(T )⌋
}
.

The following identities hold

1. LG(1/2, 1, T ) can be equivalently defined as

LG(1/2, 1, T ) :=
{
⌊T 1/2+ j

2⌊log(T )⌋ ⌋, ∀j = 0, . . . , ⌊log(T )⌋
}
.

2. Let ℓj the j−th element of LG(1/2, 1, T ), and αj =
log(ℓj)
log(T ) − 1/2. Then αj = j

2⌊log(T )⌋ +

o(T−1/2).

3. The ratio of two consecutive values of ℓj is ℓj+1

ℓj
≈ T 1

2⌊log(T )⌋ ∈ [
√
e, 2] for T ≥ 51.

Next, we prove the following lemmas, which concern some features of our algorithm.
Lemma 7. For any arm i, the probability of the event Eii0 , corresponding to i eliminating the
another i0 arm such that their gap is ∆ii0 := µi0 − µi > 0, is, at most

P(Eii0) ≤ 6 log(T )(4 log(T ) + 2)T−1/2∆−1
ii0
.

Proof. Let us call:

∆̃ii0 =
∆ii0

4 log(T ) + 2
.

At this point, there are two possibilities,
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1. ∆̃ii0 ≤ T−1/2: in this case, the statement of the lemma is vacuous.

2. ∆̃ii0 > T−1/2: in this case, by assumption, there are two consecutive ℓj⋆ , ℓj⋆+1 ∈ L such
that

∆̃i ∈
(
T 1/2

ℓj⋆+1
,
T 1/2

ℓj⋆

]
.

This is true due to the fact that that the sequence ℓj spans from T 1/2 to T . By Proposition 15,
this can be equivalently expressed by saying that

∆̃ii0 ∈
(
T− j⋆+1

2⌊log(T )⌋ , T− j⋆
2⌊log(T )⌋

]
.

Let us define the following family of events:

Eii0(t) := arm i eliminates arm i0 when both have been pulled z times.

The probability of Eii0 is bounded by:

P(Eii0) = P

(
T⋃
z=1

Eii0(z)

)
= P

(⋃
z∈L

Eii0(z)

)

≤
|L|∑
j=1

P(Eii0(ℓj)).

Here, we have applied the fact that, by design of the algorithm, the arms can only be discarded in fair
steps for which z ∈ L and then the union bound. Here, remember that by definition of the filtering
condition, defining tj as the fair time-step where both arms have been played ℓj times, this event can
be again rewritten as: {

tj∑
τ=1:τ fair

{Rτ (i) > Rτ (i0)} ≥ T 2αj

}
,

where αj =
log(ℓj)
log(T ) − 1

2 . If we call µ̂τ,i0 , µ̂τ,i the empirical means of arms i0, i after τ pulls of each,
the previous event can be interpreted as the time in which the random walk given by the difference of
the rewards of the two arms stays in (−∞, 0]:

tj∑
τ=1:τ fair

{Rτ (i) > Rτ (i0)} =
ℓj∑
τ=1

1 {µ̂τ,i ≥ µ̂τ,i0}

=

ℓj∑
τ=1

1(−∞,0]


τ∑
k=1

ri,k −
τ∑
j=1

r1,k︸ ︷︷ ︸
Gτ

 ,

where
∑τ
k=1 ri,k is the cumulative reward of arm i and

∑τ
k=1 r1,k is the cumulative reward of arm

i0. Therefore, we have written this quantity as the time spent by the random walk Gτ in the interval
(−∞, 0], for τ = 1, . . . ℓj . The drift term for this random walk is given by:

E[ri,k − r1,k] = µi0 − µi = −∆ii0 .

Therefore, we can apply Theorem 14 for the following choice of parameters,

(a) α = αj =
j

2⌊log(T )⌋ + o(T−1/2)(Proposition 15), which implies n = ⌊T 1/2+αj⌋ = ℓj .

(b) θ = j⋆+1
2⌊log(T )⌋ . (We can use this choice since the drift is

−∆ii0 = − (4 log(T ) + 2)︸ ︷︷ ︸
≥2
√

log(T )+2

∆̃ii0︸︷︷︸
≥T

−
j⋆+1

2⌊log(T )⌋

,

therefore the assumptions of the theorem are respected.)
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Applying the theorem, we have:

P(Ei(2ℓj)) ≤ 3T−1/2+θ = 3T−1/2+ j⋆+1
2⌊log(T )⌋ .

Summing over j, we get,

P

(
T⋃
t=1

E1(t)

)
≤

|L|∑
j=1

P(E1(2ℓj))

≤ 3 log(T )T−1/2+ j⋆+1
2⌊log(T )⌋ .

To conclude, consider that, by definition ,

ℓj = T 1/2+ j
2⌊log(T )⌋ ;

this means that:
∆̃ii0 ∈

(
T− j⋆+1

2⌊log(T )⌋ , T− j⋆
2⌊log(T )⌋

]
,

so that, in particular,
∆̃−1
ii0
≥ T

j⋆
2⌊log(T )⌋

and
∆−1
ii0
≥ (4 log(T ) + 2)T

j⋆
2⌊log(T )⌋ .

Substituting in the bound we have just found results in,

3 log(T )T−1/2+ j⋆+1
2⌊log(T )⌋ ≤ 3 log(T )(4 log(T ) + 2)T−1/2T

1
2⌊log(T )⌋∆−1

ii0

≤ 6 log(T )(4 log(T ) + 2)T−1/2∆−1
ii0
.

Lemma 8. For any arm i, the probability of the event E∗
i , corresponding to i not being eliminated

after (8 log(T ) + 4)T 1/2∆−1
ii0

pulls if there is an active arm i0 with ∆ii0 := µi0 − µi > 0 is, at least,

P(E∗
ii0) ≤ 2T−1/2.

Proof. Define ℓj , αj as in the previous lemma, so that αj =
log(ℓj)
log(T ) − 1

2 . As in the previous lemma,
we define:

∆̃ii0 =
∆ii0

4 log(T ) + 2
,

and j⋆ ∈ {1, . . . ⌊log(T )⌋} such that:

∆̃ii0 ∈
(
T− j⋆+1

2⌊log(T )⌋ , T− j⋆
2⌊log(T )⌋

]
.

Here, remember that by definition of the filtering condition, defining tj⋆ as the fair timestep where
both arms have been played ℓj⋆ times, E∗

i is included in the following event:{ tj⋆∑
τ=1:τ fair

{Rτ (i0) > Rτ (i)} ≥ T 2αj⋆

}
.

As before, this event can be interpreted as the difference between two random walks being negative,
due to the fact that:

tj⋆∑
τ=1:τ fair

{Rτ (i0) > Rτ (i)} =
ℓj⋆∑
τ=1

1 {µ̂τ,1 ≥ µ̂τ,i}

=

ℓj⋆∑
τ=1

1(−∞,0]


τ∑
k=1

ri0,k −
τ∑
j=1

ri,k︸ ︷︷ ︸
Gτ

 .
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In this formulation, we have written the quantity of interest for the filtering condition after ℓj⋆+1

pulls as the time spent by the random walk Gτ in the interval (−∞, 0], for τ = 1, . . . ℓj⋆+1. This
time, the drift term is:

E[ri0,k − ri,k] = µi0 − µi = ∆ii0.

Therefore, we can apply theorem 13 for α = αj⋆ , since, by assumption,

∆ii0 = (4 log(T ) + 2)︸ ︷︷ ︸
≥4log(T )

∆̃ii0︸︷︷︸
≥T

−
j⋆+1

2⌊log(T )⌋

.

This theorem leads to:

P
(
E∗
ii0

)
≤ 1− P

ℓj⋆+1∑
τ=1

1(−∞,0] (Gτ ) ≤ T 2αj⋆+1


thm.13
≤ 2T−1/2. (8)

To get the thesis, is sufficient to reformulate the critical time-step ℓj⋆+1 in terms of ∆ii0. By definition,

∆̃ii0 ≤ T− j⋆
2⌊log(T )⌋ =

T 1/2

ℓj⋆
≤ 2

T 1/2

ℓj⋆+1
.

Therefore, ∆ii0 ≤ (8 log(T ) + 4) T
1/2

ℓj⋆+1
. From this, it immediately follows,

ℓj⋆+1 ≤ (8 log(T ) + 4)T 1/2∆−1
ii0
.

We are finally able to prove our main result about the instance independent regret of the algorithm.
Theorem 8. In the stochastic bandits with ranking feedback setting, when the noise is Gaussian,
Algorithm 2 achieves RT ≤ 62n4 log(T )2T 1/2.

Proof. Fix a sub-optimal arm i with corresponding gap ∆i with respect to the optimal arm and let ψ
a parameter to be chosen later. Define, for every couple of indices i1, i0 the event:

Eψi1i0 :=

{
Ei1i0 µi0 − µi1 > ψ

∅ else,

where the event Ei1i0 is defined as arm i1 eliminating arm i0 in some point of the process. The
probability that at least one of this events verifies is bounded by lemma 7 and union bound with:

P (Ψ) := P

 n⋃
i1=1,i0=0

Eψi1i0

 ≤ 3n(n− 1) log(T )(4 log(T ) + 2)T−1/2ψ−1,

as their number is at most n(n− 1)/2. Therefore, under the complementary of Ψ, as no elimination
with gap larger than ψ happens, we are sure that an arm i⋆ with gap (w.r.t. the first arm) less than
(n− 1)ψ survives until the last: in fact, at most n− 1 eliminations may happen, and all between pair
of arms with a difference at most ψ.

As the arm i⋆ is active until the last, the probability of event E∗
ii⋆ that i survives for more than

(8 log(T ) + 4)T 1/2∆−1
ii⋆ pulls is bounded by Lemma 8 with 2T−1/2. Making the union bound over

all possible values of i⋆, which is a random variable, we can say that the probability that any of this
event happens is at most 2(n− 1)T−1/2. Summarizing, we have the following bound on Zi(T ):

1. Zi(T ) ≤ T if either Ψ verifies, which happens with probability,

3n(n− 1) log(T )(4 log(T ) + 2)T−1/2ψ−1,

or if Eii⋆ verifies, which happens with probability at most 2(n− 1)T−1/2
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2. Zi(T ) ≤ T (8 log(T ) + 4)T 1/2(∆i − (n− 1)ψ)−1 otherwise. The last comes just from the
fact that ∆ii⋆ ≥ ∆i − (n− 1)ψ, by definition of i⋆.

If we take ψ = ∆
2(n−1) , it results in,

E[∆iZi(T )] ≤ ∆iTP(∪ni1=1,i0=0E
ψ
i1i0

) + T∆iP(Eii⋆)

+ ∆iT (8 log(T ) + 4)T 1/2(∆i − (n− 1)ψ)−1

≤ ∆iT
(
3n(n− 1) log(T )(4 log(T ) + 2)T−1/2ψ−1 + 2nT−1/2

)
+∆iT (8 log(T ) + 4)T 1/2(∆i − (n− 1)ψ)−1

ψ= ∆
2(n−1)

≤ ∆iT
(
6n(n− 1)2 log(T )(4 log(T ) + 2)T−1/2∆−1

i + 2nT−1/2
)

+ 2∆iT (8 log(T ) + 4)T 1/2∆−1
i

= 6n(n− 1)2 log(T )(4 log(T ) + 2)T 1/2 + 2n∆iT
1/2 + 2T (8 log(T ) + 4)T 1/2.

Being ∆i ∈ (0, 1) and n ≥ 2, the previous quantity is bounded by,

E[∆iZi(T )] ≤ 62n3 log(T )2T 1/2.

The proof is completed by using the the Regret Decomposition Lemma Lattimore and Szepesvari
[2017].

C Proof for adversarial setting

Theorem 9. In adversarial bandits with ranking feedback, no algorithm achieves o(T ) regret with
respect to the best arm in hindsight with a probability of 1− ϵ for any ϵ > 0.

Proof. This negative result follows from the impossibility to achieve RT ≤ CT regret by any
algorithm, with C properly set constant and probability 1 − ϵ̄, in all three instances reported next.
Please notice that, this result implies that even the No-Regret property cannot be achieved in the
Bandit with Ranking Feedback setting.

Without loss of generality we consider rewards function bounded in [0, 10]. Consider three instances,
with two arms a0, a1 for each and the associated rewards, defined as follows:

Instance 1 :

{
a0 : 1

2 ∀t ∈ 1 , 1
2 ∀t ∈ 2 , 1

2 ∀t ∈ 3

a1 : 0 ∀t ∈ 1 , 0 ∀t ∈ 2 , 0 ∀t ∈ 3

Instance 2 :

{
a0 : δ ∀t ∈ 1 , 0 ∀t ∈ 2 , 0 ∀t ∈ 3

a1 : 0 ∀t ∈ 1 , 1 ∀t ∈ 2 , 1 ∀t ∈ 3

Instance 3 :

{
a0 : δ ∀t ∈ 1 , 0 ∀t ∈ 2 , 10 ∀t ∈ 3

a1 : 0 ∀t ∈ 1 , 1 ∀t ∈ 2 , 0 ∀t ∈ 3

where Phase 1 is made by the first T/4 rounds, Phase 2 is made by the next T/4 rounds, Phase
3 is made by the last T/2 rounds and δ is near to 0.

In phase 1 all the instances have the same ranking feedback, as the first action gives higher rewards
with respect to the second one. To make instance 1 receive RT ≤ CT , it is necessary:

1

2
T − 1

2
E[na0 ] ≤ CT ⇒ E[na0 ] ≥ (1− 2C)T (9)
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where na0 is the number of times the first arm has been pulled, and the expected value is taken on the
randomization of the algorithm. From previous equation we obtain that in all instances:

E
[
n

1

a0

]
≥ (1− 2C)T − 3

4
T = (1− C1)T/4 (10)

where C1 = 8C, na0 is the number of time the first arm has to be pulled in phase 1 and the
inequality is computed considering that a0 is played in all the next phases.
By reverse Markov inequality:

P
(
n

1

a0 > (1− C̄1)T/4

)
≥ C̄1 − C1

C1
(11)

Setting the probability equal to 9/10 we obtain:

C̄1 = 10C1 (12)

from which follow that with probability 9/10 we have:

n
1

a0 > (1− 10C1)T/4 (13)

and consequently:

n
1

a1 ≤ 10C1T/4. (14)

We observe that in the second Phase, Instances 2 and 3 have the same feedback. Proceeding as
done before, to make instance 2 receive RT ≤ CT it is necessary:

3

4
T − E [na1 ] ≤ CT ⇒ E[na1 ] ≥

(
3

4
− C

)
T (15)

From previous equation we obtain that in instances 2 and 3 :

E
[
n

2

a1

]
≥
(
3

4
− C

)
T − T/2 = (1− C2)T/4 (16)

where the inequality is computed considering that a1 is played in the next phases and C2 = 4C. By
Reverse Markov Inequality, we obtain that, with probability 9/10:

n
2

a1 > (1− 10C2)T/4 (17)

and consequently:

n
2

a0 ≤ 10C2T/4 (18)

We neglect the δ value for now, as it can be chosen to be insignificant with respect to the previous
computation.
Now we focus on the third phase, in which instance 2 should play:

E
[
n

3

a1

]
≥
(
3

4
− C

)
T − T/4 = (1− C3)T/2, (19)

where C3 = 2C. By Reverse Markov Inequality, we obtain that, with probability 9/10:

n
3

a1 > (1− 10C3)T/2 (20)

and consequently:

n
3

a0 ≤ 10C3T/2 (21)

Now, we compute the number of rounds needed in the third instance to switch the ranking in the third
phase, namely q. Notice that, until this switch, the last two instances receive the same feedback.
We compute q in the best-case scenario (that is, when small q value is sufficient to allow the switch)
that satisfies the constraints previously shown. Precisely, q is computed so that the empirical mean of
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arm a0 is greater then the arm a1 one, given that n
1

a0 > (1− 10C1)T/4 and n
2

a1 > (1− 10C2)T/4.
Formally:

0(1− 10C1)T/4 + 10q

q + (1− 10C1)T/4
≥ 0C110T/4 + (1− 10C2)T/4 + 0T/2

10C1T/4 + (1− 10C2)T/4 + T/2
(22)

We now show that for proper C value we can lower bound the right side with 1
4 . In particular:

0C110T/4 + (1− 10C2)T/4 + 0T/2

10C1T/4 + (1− 10C2)T/4 + T/2
>

1

4
⇒ C < 1/200 (23)

which means that, for C < 1
200 , we can substitute the right side of the equation with 1

4 to simplify the
computation. Moreover, notice that gap between 1

4 and 0C110T/4+(1−10C2)T/4+0T/2
10C1T/4+(1−10C2)T/4+T/2

allowed us to
neglect the computations with δ. Then:

0(1− 10C1)T/4 + 10q

q + (1− 10C1)T/4
≥ 1/4⇒ q ≥ 4

39

(
1

4
− 20C

)
T/4 (24)

To achieve a contradiction, it sufficient to find C so that q + n
3

a1 > T/2; indeed, the previous
inequality shows the impossibility to gain enough rewards to make the ranking change and, at the
same time, guarantee the minimum rewards to make instance 2 No-Regret. Given that the ranking
switch is a necessary condition to make instance 3 No-Regret, the result of impossibility follows for:

4

39

(
1

4
− 20C

)
T/4 + (1− 20C)T/2 > T/2⇒ C <

1

1640
(25)

To conclude the proof, we show that the intersection between the events derived by Reverse Markov
Inequality (namely Ei with i ∈ [3]) holds with constant probability:

P

⋂
i∈[3]

Ei

 = 1− P

⋃
i∈[3]

Eci


≥ 1−

∑
i∈[3]

P(Eci )

= 1− 3

10
=

7

10

where the inequality holds by Union Bound. Substituting all the previous results in the definition of
Regret we obtain, with probability 7

10 = 1− ϵ̄ and C < 1
1640 , RT ≥ CT = Ω(T ) which concludes

the proof.

D Numerical evaluation

This section presents a numerical evaluation of the algorithms proposed in the paper for the stochastic
settings, namely, DREE and R-LPE. The goal of such a study is to show two crucial results: firstly, the
comparison of our algorithms with a well-known bandit baseline, and secondly, the need to develop
distinct algorithms tailored for instance-dependent and instance-independent scenarios.

To establish a benchmark for comparison, we consider the EC (Explore-Then-Commit) algorithm,
which is one of the most popular algorithms among the explore-then-commit class providing sub-
linear regret guarantees. In the following, we evaluate the DREE algorithm with different choices
of the δ parameter in the function f(t) = log(t)1+δ; precisely, we choose δ ∈ {1.0, 1.5, 2.0}.
Furthermore, we consider four stochastic instances whose specific parameters are discussed below.
In all these instances, we assume the rewards to be drawn from Gaussian random variables with
unit variance, i.e., σ2 = 1, and we let the time horizon be equal to T = 2 · 105. Finally, for each
algorithm, we evaluate the cumulative regret averaged over 50 runs.

We structure the presentation of the experimental results into two groups. In the first, the instances
have a small ∆min, while in the second, the instances have a large ∆min.
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Figure 1: Instance with ∆min = 0.03 and all the gaps small.
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Figure 2: Instance with ∆min = 0.03 and the other gaps big

Small values of ∆min We focus on two instances with ∆min < 0.05. In the first of these two
instances, we consider n = 4 arms, and a minimum gap of ∆min = 0.03. In the second instance, we
consider n = 6 arms, with ∆min = 0.03. The expected values of the rewards of each arm are reported
in Section D.1, while the experimental results in terms of average cumulative regret are reported in
Figures 1–2. We observe that in the first instance (see Figure 1) all the DREE algorithms exhibits a
linear regret bound, confirming the strong sensitivity of this family of algorithms on the parameter
∆min in terms of regret bound. In contrast, the R-LPE algorithm exhibits better performances in terms
of regret bound, as its theoretical guarantee are independent on the values of ∆min. Furthermore,
Figure 2 shows that the DREE algorithms (with δ ∈ 1.0, 1.5) achieve a better regret bound when the
number of arms is increased. Indeed, these regret bounds are comparable to the ones achieved by
the R-LPE algorithm. The previous result is reasonable as the presence of ∆i-s in the regret bound
lowers the dependence on the number of arms. It is worth noticing that all our algorithms outperform
the baseline EC.

Large values of ∆min We focus on two instances with ∆min ≥ 0.25. In the first instance, we
consider n = 4 arms with a minimum gap of ∆min = 0.5 among their expected rewards. In the
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Figure 3: Instance with ∆min = 0.5.
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Figure 4: Instance with ∆min = 0.25.

second instance, we instead consider a larger number of arms, specifically n = 8, with a minimum
gap equal to ∆min = 0.25. The expected values of the rewards are reported in Section D.1, while the
experimental results in terms of average cumulative regret are provided in Figures 3–4. As it clear
from both Figures 3–4 when ∆min is sufficiently large, the DREE algorithms (with δ ∈ {1.0, 1.5})
achieves better performances with respect both the EC and R-PLE algorithms in terms of cumulative
regret. Furthermore, there is empirical evidence that a small δ guarantees better performance, which
is reasonable according to theory. Indeed, when δ is small, the function f(t), which drives the
exploration, is closer to a logarithm. Also, as shown in Corollary 3, when ∆min is large enough, the
parameter δ affects the dimension of C(f,∆i) more weakly, which results in a better regret bound.

D.1 Experiments

For the sake of clarity, we report in the followings additional details on the four instances presented
in Figures 1,2,3,4. Notice that, all the plots present the cumulative regret averaged for 50 runs, with
95% confidence interval. Furthermore:
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• Instance of Figure 1: time horizon T = 2 · 105, arms n = 4, mean reward vector

µ = [0.9, 1.05, 1.12, 1.15],

unitary variance for each arm, ∆min = 0.03;
• Instance of Figure 2: time horizon T = 2 · 105, arms n = 6, mean reward vector

µ = [0.03, 0.07, 0.1, 0.08, 0.97, 1],

unitary variance for each arm, ∆min = 0.03;
• Instance of Figure 3: time horizon T = 2 · 105, arms n = 4, mean reward vector

µ = [0.05, 0.25, 0.5, 1.0],

unitary variance for each arm, ∆min = 0.5;
• Instance of Figure 4: time horizon T = 2 · 105, arms n = 8, mean reward vector

µ = [0.05, 0.05, 0.1, 0.15, 0.25, 0.5, 0.75, 1.0],

unitary variance for each arm, ∆min = 0.25;

D.2 Detailed explanation of the experiments

In this section, we report all the details of the experiments performed in the paper. These are important
to ensure the truthfullness of the results and the claims based on empirical validation.

Training details In the main paper we have presented four experiments, each corresponding to a
different environment. Each experiment is performed for fifty random seeds, ad the computation
is split in 10 parallel processes by the library joblib. The overall computational time for one
experiment is around 337.92 seconds, that is roughly five minutes and one half.

Compute As stated, the numerical simulations resulted to be very fast. For this reason, it was not
necessary to run them on a server, and we used a personal computer with the following specifications:

• CPU: 11th Gen Intel(R) Core(TM) i7-1165G7 2.80 GHz
• RAM: 16,0 GB
• Operating system: Windows 11
• System type: 64 bit

Reproducibility Due to the stochastic nature of the bandit problem, all the simulations have been
repeated several times. We have performed all the experiments with 50 different random seeds,
corresponding precisely to the first 50 natural numbers. The seed influences the generation of the
reward by the environment, while all algorithms proposed, being deterministic, are independent on
the seed.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All we say in the abstract is done in the work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We clarifiy that the contribution is theoretical, which is the only aspect that
can be seen as a limitation of this work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We leave the complete and formal proofs in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In the appendix we report every detail of the experiments, even the amount of
CPU time used.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide the code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: These information are reported in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Every experiment reports, together with the regret curves, a shaded area
indicating the uncertainty.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: These information are reported in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Experiments are just Python simulation, no concerns about real data.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Only theoretical work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We did not use data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We only use standard Python libraries to make the experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Answered in previous questions.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not do any crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We have no study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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